
Document Number: MD00126
Revision 01.10
Sept 28, 2002

MIPS Technologies, Inc.
1225 Charleston Road

Mountain View, CA 94043-1353

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

MIPS64™ 20Kc™ Processor Core User’s
Manual

Copyright © 2002 MIPS Technologies, Inc. All rights reserved.

Unpublished rights (if any) are reserved under the Copyright Laws of the United States of America.

If this document is provided in source format (i.e., in a modifiable form such as in FrameMaker or Microsoft Word format), then
its use and distribution is subject to a written agreement with MIPS Technologies, Inc. ("MIPS Technologies"). UNDER NO
CIRCUMSTANCES MAY A DOCUMENT PROVIDED IN SOURCE FORMAT BE DISTRIBUTED TO A THIRD PARTY
WITHOUT THE EXPRESS WRITTEN CONSENT OF MIPS TECHNOLOGIES.

This document contains information that is proprietary to MIPS Technologies. Any copying, reproducing, modifying, or use of
this information (in whole or in part) which is not expressly permitted in writing by MIPS Technologies or a
contractually-authorized third party is strictly prohibited. At a minimum, this information is protected under unfair competition
and copyright laws. Violations thereof may result in criminal penalties and fines.

MIPS Technologies or any contractually-authorized third party reserves the right to change the information contained in this
document to improve function, design or otherwise. MIPS Technologies does not assume any liability arising out of the
application or use of this information, or of any error of omission in such information. Any warranties, whether express,
statutory, implied or otherwise, including but not limited to the implied warranties of merchantability or fitness for a particular
purpose, are excluded. Any license under patent rights or any other intellectual property rights owned by MIPS Technologies
or third parties shall be conveyed by MIPS Technologies or any contractually-authorized third party in a separate license
agreement between the parties.

The information contained in this document shall not be exported or transferred for the purpose of reexporting in violation of
any U.S. or non-U.S. regulation, treaty, Executive Order, law, statute, amendment or supplement thereto.

The information contained in this document constitutes one or more of the following: commercial computer software,
commercial computer software documentation or other commercial items. If the user of this information, or any related
documentation of any kind, including related technical data or manuals, is an agency, department, or other entity of the United
States government (“Government”), the use, duplication, reproduction, release, modification, disclosure, or transfer of this
information, or any related documentation of any kind, is restricted in accordance with Federal Acquisition Regulation 12.212
for civilian agencies and Defense Federal Acquisition Regulation Supplement 227.7202 for military agencies. The use of this
information by the Government is further restricted in accordance with the terms of the license agreement(s) and/or applicable
contract terms and conditions covering this information from MIPS Technologies or any contractually-authorized third party.

MIPS®, R3000®, R4000®, R5000® and R10000® are among the registered trademarks of MIPS Technologies, Inc. in the
United States and certain other countries, and MIPS16™, MIPS16e™, MIPS32™, MIPS64™, MIPS-3D™, MIPS-based™,
MIPS I™, MIPS II™, MIPS III™, MIPS IV™, MIPS V™, MDMX™, MIPSsim™, MIPSsimCA™, MIPSsimIA™,
QuickMIPS™, SmartMIPS™, MIPS Technologies logo, 4K™, 4Kc™, 4Km™, 4Kp™, 4KE™, 4KEc™, 4KEm™, 4KEp™,
4KS™, 4KSc™, M4K™, 5K™, 5Kc™, 5Kf™, 20K™, 20Kc™, 25Kf™, R4300™, ASMACRO™, ATLAS™, BusBridge™,
CoreFPGA™, CoreLV™, EC™, JALGO™, MALTA™, MGB™, PDtrace™, SEAD™, SEAD-2™, SOC-it™, The Pipeline™,
and YAMON™ are among the trademarks of MIPS Technologies, Inc.

All other trademarks referred to herein are the property of their respective owners.

Template: B1.06, Build with Conditional Tags: 2B 20KC
MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

Table of Contents

Chapter 1 Introduction to the 20Kc Processor ..1
1.1 Features ...1
1.2 Architectural Overview ...3

1.2.1 Instruction Fetch Unit ...4
1.2.2 Instruction Dispatch Unit ..4
1.2.3 Integer Execution Unit ..4
1.2.4 Floating-Point Unit ...5
1.2.5 Load/Store Unit ...5
1.2.6 Memory Management Unit ...5
1.2.7 Bus Interface Unit ...5
1.2.8 EJTAG Unit ..6

1.3 System Overview ..6

Chapter 2 Instruction Set Overview ..7
2.1 CPU Instruction Formats ..7
2.2 Load and Store Instructions ..8

2.2.1 Scheduling for Load Use Latencies ..8
2.2.2 Defining Access Types ...8

2.3 Computational Instructions ...10
2.3.1 Multiply and Divide Instructions ..10

2.4 Jump and Branch Instructions ...10
2.4.1 Overview of Jump Instructions ...10
2.4.2 Overview of Branch Instructions ..11

2.5 Control Instructions ...11
2.6 Coprocessor Instructions ...11
2.7 Enhancements to the MIPS Architecture ..11

Chapter 3 Pipeline ...13
3.1 Pipeline Overview ...13
3.2 Fetch Pipeline ..14

3.2.1 F Stage: Instruction Fetch ...15
3.2.2 V Stage: Validate ..15

3.3 Dispatch Pipeline ..15
3.3.1 D Stage: Instruction Decode ...16
3.3.2 R Stage: Register File Read ..16

3.4 Integer and Load/Store Pipelines ..16
3.4.1 Integer Pipeline A ...16
3.4.2 Integer Pipeline B ...18

3.5 Floating-Point Pipeline ...20
3.5.1 M Stage: FP Multiplier Array - First Pass ..20
3.5.2 N Stage: FP Multiplier Array - Second Pass ..21
3.5.3 I Stage: FP Multiply Completion ..21
3.5.4 J Stage: FP Add ...21
3.5.5 K Stage: FP Normalization ...21
3.5.6 Z Stage: FPR Write ...21

3.6 Instruction Latencies and Repeat Rates ..21
3.7 Instruction Fetch Rules ...24
3.8 Instruction Dispatch Rules ..28
3.9 Dispatch of Privileged Instructions ...32

Chapter 4 Memory Management ...33
MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10 1

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

.
....40
...41
4.1 Operating Modes ...33
4.2 Other Modes ..34

4.2.1 64-bit Address Enable ...34
4.2.2 64-bit Operations Enable ..34
4.2.3 64-bit FPR Enable ...34

4.3 Processor Mode Selection ...35
4.4 Addressing Modes ...35
4.5 Address Space ...36

4.5.1 Access Control as a Function of Address and Operating Mode ..39
4.5.2 Address Translation and Cache Coherency Attributes for the kseg0 and kseg1 Segments
4.5.3 Address Translation and Cache Coherency Attributes for the xkphys Segment
4.5.4 Address Translation for the kuseg Segment when StatusERL = 1 ...42
4.5.5 Special Behavior for the kseg3 Segment when DebugDM = 1 ...42
4.5.6 Special Behavior for Data References in User Mode with StatusUX = 0 ...43

4.6 Address Segments ...43
4.6.1 User Mode Segments ..43
4.6.2 Supervisor Mode Segments ..44
4.6.3 Kernel Mode Segments ...46
4.6.4 Debug Mode ..49

4.7 Virtual Address Translation ..50
4.7.1 Page Size Support ...50
4.7.2 Address Space Identifiers and Global Processes ..51
4.7.3 Address Translation Mechanism ...51

4.8 Translation Lookaside Buffers ..52
4.8.1 20Kc TLB Organization ...53
4.8.2 TLB Tag and Data Formats ..55

4.9 TLB Instructions ...57
4.9.1 Hits, Misses, and Multiple Matches ..57
4.9.2 Page Sizes and Replacement Algorithm ...58

Chapter 5 Exceptions and Interrupts ...59
5.1 Exception Conditions ..59
5.2 Exception Types ..60
5.3 Exception Priority ...60
5.4 Exception Vector Locations ..62
5.5 General Exception Processing ..63
5.6 Debug Exception Processing ..64
5.7 Exceptions ...64

5.7.1 Reset Exception ..64
5.7.2 Soft Reset Exception ...65
5.7.3 Debug Single Step Exception ...66
5.7.4 Debug Interrupt Exception ..66
5.7.5 Debug Instruction Break Exception ..66
5.7.6 Non-Maskable Interrupt (NMI) Exception ...66
5.7.7 Machine Check Exception ..67
5.7.8 Bus Error Exception — Instruction Fetch or Data Access ...67
5.7.9 Cache Error Exception ..68
5.7.10 Interrupt Exception ...69
5.7.11 Debug Software Breakpoint Exception ..69
5.7.12 Watch Exception — Instruction Fetch or Data Access ..69
5.7.13 Address Error Exception — Instruction Fetch/Data Access ...70
5.7.14 TLB Refill and XTLB Refill Exceptions ..71
5.7.15 TLB Invalid Exception — Instruction Fetch or Data Access ...72
5.7.16 Execution Exception — System Call ..72
5.7.17 Execution Exception — Breakpoint ...72
5.7.18 Execution Exception — Reserved Instruction ..73
2 MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

.11
.

5.7.19 Execution Exception — Coprocessor Unusable ...74
5.7.20 Execution Exception — Integer Overflow ...74
5.7.21 Execution Exception — Trap ..75
5.7.22 Precise Debug Data Break Exception ...75
5.7.23 Imprecise Debug Data Break Exception ...75
5.7.24 TLB Modified Exception — Data Access ..75

5.8 Exception Handling and Servicing Flowcharts ...76
5.9 Interrupts ...81

Chapter 6 Coprocessor Registers ..83
6.1 CP0 Register Summary ...83
6.2 CP0 Registers ..84

6.2.1 Index Register (CP0 Register 0, Select 0) ..85
6.2.2 Random Register (CP0 Register 1, Select 0) ..86
6.2.3 EntryLo0, EntryLo1 (CP0 Registers 2 and 3, Select 0) ..87
6.2.4 Context Register (CP0 Register 4, Select 0) ...88
6.2.5 PageMask Register (CP0 Register 5, Select 0) ...89
6.2.6 Wired Register (CP0 Register 6, Select 0) ..89
6.2.7 BadVAddr Register (CP0 Register 8, Select 0) ..90
6.2.8 Count Register (CP0 Register 9, Select 0) ..91
6.2.9 EntryHi Register (CP0 Register 10, Select 0) ...91
6.2.10 Compare Register (CP0 Register 11, Select 0) ...92
6.2.11 Status Register (CP0 Register 12, Select 0) ..92
6.2.12 Cause Register (CP0 Register 13, Select 0) ..96
6.2.13 Exception Program Counter (CP0 Register 14, Select 0) ...98
6.2.14 Processor Identification (CP0 Register 15, Select 0) ..99
6.2.15 Config Register (CP0 Register 16, Select 0) ..99
6.2.16 Config1 Register (CP0 Register 16, Select 1) ..102
6.2.17 Load Linked Address (CP0 Register 17, Select 0) ...105
6.2.18 WatchLo Register (CP0 Register 18) ...105
6.2.19 WatchHi Register (CP0 Register 19) ..106
6.2.20 XContext Register (CP0 Register 20) ...107
6.2.21 Debug Register (CP0 Register 23) ..108
6.2.22 Debug Exception Program Counter Register (CP0 Register 24) ...1
6.2.23 Performance Counter Registers (CP0 Register 25, Selects 0, 1) ...112
6.2.24 DErrCtl Register (CP0 Register 26, Select 0) ...114
6.2.25 IErrCtl Register (CP0 Register 26, Select 1) ..115
6.2.26 CacheErr Register (CP0 Register 27, Select 0) ..115
6.2.27 ITagLo Register (CP0 Register 28, Select 0) ..116
6.2.28 IDataLo Register (CP0 Register 28, Select 1) ..117
6.2.29 DTagLo Register (CP0 Register 28, Select 2) ..118
6.2.30 DDataLo Register (CP0 Register 28, Select 3) ...118
6.2.31 ITagHi Register (CP0 Register 29, Select 0) ..119
6.2.32 IDataHi Register (CP0 Register 29, Select 1) ...119
6.2.33 DTagHi Register (CP0 Register 29, Select 2) ..120
6.2.34 DDataHi Register (CP0 Register 29, Select 3) ...120
6.2.35 ErrorEPC (CP0 Register 30, Select 0) ..121
6.2.36 DESAVE Register (CP0 Register 31) ...121

6.3 CP0 Hazards ..121
6.4 CP1 Register Summary ...122
6.5 CP1 Registers ..122

6.5.1 Floating-Point Implementation Register (CP1 Register 0) ...123
6.5.2 Floating-Point Condition Codes Register (CP1 Register 25) ...124
6.5.3 Floating-Point Exceptions Register (CP1 Register 26) ..125
6.5.4 Floating-Point Enables Register (CP1 Register 28) ..125
6.5.5 Floating-Point Control and Status Register (CP1 Register 31) ..126
MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10 3

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

36
Chapter 7 Caches ...129
7.1 Instruction Cache ..129

7.1.1 Memory Management implications of the Virtual I-Cache ..130
7.2 Data Cache ..130
7.3 Cache Protocol ..131
7.4 Cache Attributes ..131

7.4.1 Uncached ...131
7.4.2 Uncached Accelerated ..132
7.4.3 Non-Coherent Write-Back ..133
7.4.4 Coherent Exclusive Write-Back ...133
7.4.5 Non-Coherent, Write-Through with No Write-Allocate ..133
7.4.6 Encoding ...134

Chapter 8 Bus Interface Unit ...135
8.1 20Kc System Interface Features ...135

8.1.1 Processor and External Requests ..135
8.1.2 Multiplexed Unidirectional 32-bit Processor Address/Data Bus ..136
8.1.3 Multiplexed Unidirectional 64-bit SOC Controller Address/Data Bus ..1
8.1.4 Support for Multiple Outstanding Split Transactions ...137
8.1.5 Credit-Based Flow Control ...137

8.2 Bus Encoding (64-bit EB_SysAD Mode) ...139
8.2.1 PrcCmd/SysCmd Bus Encoding (Command Cycles) ...139
8.2.2 PrcCmd/SysCmd Bus Encoding (Data Cycles) ..144

8.3 Processor and External Request Protocols (64-bit EB_SysAD Mode) ...145
8.3.1 Processor Requests ..145
8.3.2 External Requests ..149
8.3.3 Coherency Conflicts ..151
8.3.4 Data Ordering ..153
8.3.5 Data Alignment ...154
8.3.6 Dual Multiplexed Address and Data Buses ..154

8.4 Bus Encoding (32-bit EB_SysAD Mode) ...156
8.4.1 PrcCmd/SysCmd Bus Encoding (Command Cycles) ...156

8.5 Processor and External Request Protocols (32-bit EB_SysAD Mode) ...162
8.5.1 Processor Requests ..162

8.6 20Kc Signal Descriptions ..167

Chapter 9 Reset and Initialization ...175
9.1 Processor Reset Signals ..175
9.2 Processor Initialization Signals ...175
9.3 Reset Sequences ..176

9.3.1 Power-On Reset Sequence ..176
9.3.2 ColdReset Sequence ..177
9.3.3 Warm Reset Sequence ..178

Chapter 10 Power Management ..179
10.1 Register-Controlled Power Management ..179
10.2 Instruction-Controlled Power Management ..179

Chapter 11 EJTAG Debug Support ...181
11.1 EJTAG Components and Options ...181

11.1.1 EJTAG Extensions to the MIPS Processor Core ..182
11.1.2 Debug Control Register ..182
11.1.3 Hardware Breakpoint Unit ..182
11.1.4 EJTAG Test Access Port ..183

11.2 Register and Memory Map Overview ...183
11.2.1 Coprocessor 0 Register Overview ..183
11.2.2 Memory-Mapped EJTAG Register Overview ..183
4 MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

11.2.3 Data Hardware Breakpoint Register Overview ..184
11.2.4 Register Field Notations ...186

11.3 EJTAG Processor Core Extensions ...186
11.3.1 Debug Mode Execution ..186
11.3.2 Debug Mode Instruction Set ...186
11.3.3 Debug Mode Address Space ...187
11.3.4 Debug Mode Handling of Processor Resources ...189
11.3.5 Debug Exceptions ...189
11.3.6 Debug Mode Exceptions ...193
11.3.7 Interrupts and NMIs ..196
11.3.8 Reset and Soft Reset of the Processor ...197
11.3.9 EJTAG Instructions ..197
11.3.10 EJTAG Coprocessor 0 Registers ..198

11.4 Debug Control Register ..198
11.5 Hardware Breakpoints ...199

11.5.1 Introduction ...200
11.5.2 Overview of Instruction and Data Breakpoint Registers ..201
11.5.3 Conditions for Matching Breakpoints ...202
11.5.4 Debug Exceptions from Breakpoints ..204
11.5.5 Breakpoints Used as Triggerpoints ...206
11.5.6 Instruction Breakpoint Registers ...207
11.5.7 Data Breakpoint Registers ..210

11.6 EJTAG Test Access Port ...214
11.6.1 TAP Signals ..215
11.6.2 TAP Controller ..216
11.6.3 Test-Logic-Reset State ..217
11.6.4 Instruction Register and Special Instructions ...218
11.6.5 Data Registers ...220

Chapter 12 20Kc Test Features ...231
12.1 Cache Test Mode ..231

12.1.1 Cache Test Mode Interface Signals ..231
12.1.2 System Interface Clock Divisor and Mode ...231
12.1.3 Entering Cache Test Mode ..232
12.1.4 Exit from Cache Test Mode ..234
12.1.5 Cache Test Mode Commands ...234
12.1.6 Read/Write Granularity ...235
12.1.7 Encodings ..235
12.1.8 Protocols ...239

12.2 PLL Bypass Mode ...240
12.3 BIST (Built-In Self Test) ..241

12.3.1 Overview ...241
12.3.2 Algorithms for Memory Test ..244
12.3.3 BIST Integration on 20Kc Cache Memories ..245
12.3.4 Cycles for Memory BIST Testing ...246

Chapter 13 Instruction Set Architecture ..247
13.1 CPU Architecture ..247

13.1.1 CPU Register Overview ..247
13.1.2 Endianness ..248
13.1.3 CPU Instruction Overview ..248

13.2 FPU Architecture ..254
13.2.1 FPU Register Overview ..254
13.2.2 FPU Instruction Overview ..255

13.3 Coprocessor Architecture ..258
13.4 Privileged Instruction Set Architecture ...258
MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10 5

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

13.4.1 Privileged Register Overview ...258
13.4.2 Privileged Instruction Overview ...258

13.5 EJTAG Support Instructions ...259
13.6 Instruction Bit Encoding ...259
13.7 MIPS64 Instruction Descriptions ..266

13.7.1 UNPREDICTABLE and UNDEFINED ...266
13.7.2 Unprivileged Instructions ..268
13.7.3 Privileged Instructions ..271

Chapter 14 Floating-Point Unit ...285
14.1 Special FCSR Bits ...285

14.1.1 Flush-to-Zero (FS) ..285
14.1.2 Flush-Override (FO) ...286
14.1.3 Flush-to-Nearest (FN) ...286
14.1.4 Summary of FS, FO and FN Bits ..286

14.2 FCSR Cause Bit Update Flow ..287
14.2.1 Exceptions Triggered by CTC1 ..287
14.2.2 Generic Cause Bit Update Flow ...287
14.2.3 Multiply-Add Cause Bit Update Flow ..287
14.2.4 Cause Update Flow for Operands ...287
14.2.5 Cause Update Flow for Paired Single ...288
14.2.6 Cause Update Flow for Unimplemented Operation ..288

14.3 Denormal Handling ...288
14.4 Reciprocal and Reciprocal Square Root ...289

14.4.1 Forced Inexact ...289
14.4.2 Forced Round-to-Nearest ..289
14.4.3 Forced Flush-to-Nearest ..289
14.4.4 Special Results ..289
14.4.5 RSQRT2 Implementation ...290

14.5 Single-Precision Result or Single-Word Load ..290
14.6 QNaN Priority ...290
14.7 Convert Ranges ...290

14.7.1 Convert Integer to Float ..290
14.7.2 Convert Float to Integer ..291
14.7.3 Convert Double to Single Precision: CVT.S.D ..291

Appendix A Revision History ...293

Appendix B References ...295
6 MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

List of Figures

Figure 1-1: 20Kc Processor Core Block Diagram..3
Figure 2-1: Instruction Formats..8
Figure 3-1: 20Kc Core Pipeline..14
Figure 3-2: Dispatch Pipeline...15
Figure 3-3: Integer Execution Pipeline A...17
Figure 3-4: Integer Execution Pipeline B...19
Figure 3-5: Floating-Point Pipeline ..20
Figure 3-6: Instruction Fetch Groups ...24
Figure 3-7: Branch Target Within Instruction Group...24
Figure 3-8: Taken Branch Within Instruction Group ...25
Figure 3-9: Taken Branch as Last Instruction in Fetch Group...25
Figure 3-10: Bubble Caused by Taken Branch of Jump Instruction ..26
Figure 3-11: Decode Restrictions Based on Fetch Groups ..26
Figure 3-12: Instruction Stall on Buffer Full..27
Figure 3-13: Resumption of Instruction Fetch After Stall..27
Figure 3-14: Instructions Dispatched in Program Order ..28
Figure 3-15: Two Instruction Dispatch Limit ..28
Figure 3-16: Dispatch Restrictions Based on Input Dependencies ..29
Figure 3-17: Dispatch Restrictions Based on Output Dependencies..30
Figure 3-18: Dispatch Restrictions Based on Branch Delay Slots ...30
Figure 3-19: Dispatch Restrictions Relating to MULT..30
Figure 3-20: Dispatch Restrictions Arising From DMULT...30
Figure 3-21: Dispatch Restrictions Arising from MUL Instruction...31
Figure 3-22: Dispatch Restrictions on MTHI/MTLO Instructions ..31
Figure 3-23: Dispatch Restrictions Arising from Floating-Point Double-Precision Multiplies...31
Figure 3-24: Dispatch Restrictions on CTC1 and CFC1..31
Figure 3-25: Dispatch Restrictions on Privileged Instructions...32
Figure 3-26: Dispatch Restrictions Arising from Certain MTC0 Instructions...32
Figure 3-27: Dispatch Restrictions on Certain MTC0 Instructions..32
Figure 4-1: Address Components...36
Figure 4-2: Virtual Address Space ...37
Figure 4-3: Address Interpretation for the xkphys Segment ..41
Figure 4-4: User Mode Addressing ..44
Figure 4-5: Supervisor Mode Addressing ..45
Figure 4-6: Kernel Mode Addressing (32-bit)..46
Figure 4-7: Kernel Mode Addressing (64-bit)..48
Figure 4-8: Debug Mode Virtual Address Space ...50
Figure 4-9: Overview of a Virtual-to-Physical Address Translation ...51
Figure 4-10: 20Kc Virtual Address Translation Example..52
Figure 4-11: Contents of a TLB Entry ...53
Figure 4-12: TLB Tag Entry Format ..55
Figure 4-13: TLB Data Array Entry Format ..56
Figure 5-1: General Exception Handler (HW) ...77
Figure 5-2: General Exception Servicing Guidelines (SW) ...78
Figure 5-3: TLB Miss Exception Handler (HW) ...79
Figure 5-4: TLB Exception Servicing Guidelines (SW) ..80
Figure 5-5: Reset, Soft Reset and NMI Exception Handling and Servicing Guidelines..81
Figure 6-1: Wired and Random Entries in the TLB ...90
Figure 7-1: Instruction Cache State Diagram...131
Figure 7-2: Data Cache State Diagram...131
MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10 7

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

..147

...157

..164

..219
Figure 8-1: Processor and SOC Controller Requests ...136
Figure 8-2: Request/Response Combinations ..136
Figure 8-3: Transaction Tags..137
Figure 8-4: Credit Counter Programming ..138
Figure 8-5: SOC Controller Resource Control ...138
Figure 8-6: Processor Resource Control...139
Figure 8-7: Command Bus Formats During a Command Cycle ..140
Figure 8-8: Command Bus Formats During a Data Cycle ...144
Figure 8-9: 32-bit EB_PrcAD/64-bit EB_SysAD Block Read Protocol..147
Figure 8-10: 32-bit EB_PrcAD/64-bit EB_SysAD Double/Single/Partial Word Read Protocol...................................
Figure 8-11: 32-bit EB_PrcAD Block Write Protocol ...148
Figure 8-12: 32-bit EB_PrcAD Double/Single/Partial Word Write Protocol ..149
Figure 8-13: External Intervention with Associated Data Response..150
Figure 8-14: External Intervention with No Data Response ..150
Figure 8-15: External Invalidation ...151
Figure 8-16: 64-bit Block Data Ordering ...153
Figure 8-17: 32-bit Block Data Ordering ...154
Figure 8-18: Data Alignment Example ..154
Figure 8-19: Command Bus Formats During a Command Cycle (32-bit EB_SysAD Mode)......................................
Figure 8-20: Command Bus Formats During a Data Cycle ...161
Figure 8-21: 32-bit EB_PrcAD/32-bit EB_SysAD Block Read Protocol..163
Figure 8-22: 32-bit EB_PrcAD/32-bit EB_SysAD Double/Single/Partial Word Read Protocol...................................
Figure 8-23: 32-bit EB_PrcAD Block Write Protocol ...164
Figure 8-24: 32-bit EB_PrcAD Double/Single/Partial Word Write Protocol ..165
Figure 8-25: External Intervention with Associated Data Response..166
Figure 8-26: External Intervention with No Data Response ..167
Figure 8-27: External Invalidation ...167
Figure 8-28: 20Kc System Interface Signal Groupings ...168
Figure 9-1: Power-On Reset Sequence...177
Figure 9-2: Cold Reset Sequence ...178
Figure 9-3: Warm Reset Sequence ...178
Figure 11-1: Simplified Block Diagram of EJTAG Components ..182
Figure 11-2: DCR Register Format ..198
Figure 11-3: Instruction Hardware Breakpoint Overview..200
Figure 11-4: Data Hardware Breakpoint Overview ...200
Figure 11-5: IBS Register Format ..208
Figure 11-6: IBAn Register Format ...208
Figure 11-7: IBMn Register Format...209
Figure 11-8: IBASIDn Register Format ...209
Figure 11-9: IBCn Register Format..209
Figure 11-10: DBS Register Format...211
Figure 11-11: DBAn Register Format..212
Figure 11-12: DBMn Register Format ...212
Figure 11-13: DBASIDn Register Format ...212
Figure 11-14: DBCn Register Format ..213
Figure 11-15: DBVn Register Format ...214
Figure 11-16: Test Access Port (TAP) Overview ..215
Figure 11-17: TAP Controller State Diagram ..216
Figure 11-18: Shifting of the Instruction Register During the Shift IR State ..217
Figure 11-19: Shifting of the Instruction Register During the Shift DR State...218
Figure 11-20: Selecting Registers Using the ALL Instruction...219
Figure 11-21: EJ_TDI to EJ_TDO Path when in Shift-DR State and FASTDATA Instruction is Selected
Figure 11-22: Device ID Register Format ...220
Figure 11-23: Implementation Register Format ...221
Figure 11-24: Data Register Format ..222
8 MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

Figure 11-25: Address Register Format ..224
Figure 11-26: EJTAG Control Register Format ..225
Figure 11-27: Fastdata Register Format ...228
Figure 11-28: Bypass Register Format...230
Figure 12-1: Entering Cache Test Mode After a Power-On Reset Sequence ..233
Figure 12-2: Entry into Cache Test Mode during a ColdReset Sequence..234
Figure 12-3: Normal Read Cycle ...239
Figure 12-4: Data/Instruction Cache Tag Normal Write..240
Figure 12-5: Write Same Data Command ..240
Figure 12-6: Integration of BIST with Memory...241
Figure 12-7: BIST algorithm selection...242
Figure 12-8: External Signal Behavior for a Memory Test..243
Figure 12-9: Retention Testing Example Waveform ...244
Figure 12-10: Example of March Test Written in March Test Notation..245
Figure 12-11: March C+ Algorithm in March Test Notation...245
Figure 12-12: IFA-13 Algorithm in March Test Notation ...245
Figure 13-1: CPU Registers in MIPS64 Native Mode ...248
Figure 13-2: FPU Registers if StatusFR is 1 ..254
Figure 13-3: FPU Registers if StatusFR is 0 ..255
Figure 13-4: Usage of Address Fields to Select Index and Way..272
MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10 9

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

10 MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

.......3
.........41
List of Tables

Table 2-1: Byte Access within a Word...9
Table 3-1: Instruction Groups, Latencies, and Repeat Rates ..21
Table 3-2: Static Dispatch Rules ...29
Table 4-1: Processor Modes ...35
Table 4-2: Virtual Memory Address Spaces ..38
Table 4-3: Address Space Access and TLB Refill Selection as a Function of Operating Mode9
Table 4-4: Address Translation and Cache Coherency Attributes for the kseg0 and kseg1 Segments.....................
Table 4-5: Address Translation and Cacheability Attributes for the xkphys Segment ...41
Table 4-6: xkphys Spaces...49
Table 4-7: Physical Address Generation ..55
Table 4-8: TLB Tag Entry Fields ..55
Table 4-9: TLB Data Array Entry Fields ..56
Table 4-10: TLB Instructions ...57
Table 4-11: Mask and Page Size Values ...57
Table 5-1: Exception Type Characteristics ..60
Table 5-2: Priority of Exceptions ...60
Table 5-3: Exception Vector Base Addresses ..62
Table 5-4: Exception Vector Offsets ..62
Table 5-5: Exception Vectors ...62
Table 5-6: CP0 Register States on a Cache Error Exception ...68
Table 5-7: Register States an Interrupt Exception..69
Table 5-8: Register States on a Watch Exception ..70
Table 5-9: CP0 Register States on an Address Exception Error ..71
Table 5-10: CP0 Register States on a TLB/XTLB Refill Exception..71
Table 5-11: CP0 Register States on a TLB Invalid Exception...72
Table 5-12: Register States on a Coprocessor Unusable Exception...74
Table 5-13: Register States on a TLB Modified Exception ...76
Table 5-14: Mapping of Interrupts to the Cause and Status Registers ...82
Table 6-1: CP0 Registers ...83
Table 6-2: CP0 Register Field Types ...85
Table 6-3: Index Register Field Descriptions...86
Table 6-4: Random Register Field Descriptions ..87
Table 6-5: EntryLo0, EntryLo1 Register Field Descriptions ..87
Table 6-6: Cache Coherency Attributes ..88
Table 6-7: Context Register Field Descriptions ...88
Table 6-8: PageMask Register Field Descriptions ...89
Table 6-9: Values for the Mask Field of the PageMask Register...89
Table 6-10: Wired Register Field Descriptions..90
Table 6-11: BadVAddr Register Field Description..91
Table 6-12: Count Register Field Description..91
Table 6-13: EntryHi Register Field Descriptions...92
Table 6-14: Compare Register Field Description...92
Table 6-15: Status Register Field Descriptions ...93
Table 6-16: Cause Register Field Descriptions ...97
Table 6-17: Cause Register Exc Code Field Descriptions ..97
Table 6-18: EPC Register Field Description ..99
Table 6-19: PRId Register Field Descriptions..99
Table 6-20: Config Register Field Descriptions ..100
Table 6-21: Config1 Register Field Descriptions ..102
Table 6-22: LLAddr Register Field Descriptions...105
MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10 11

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

....143

.....
Table 6-23: WatchLo Register Field Descriptions...106
Table 6-24: WatchHi Register Field Descriptions ..107
Table 6-25: XContext Register Field Descriptions ..108
Table 6-26: Debug Register Field Descriptions ..109
Table 6-27: Debug Register Formats ...112
Table 6-28: Performance Counter Control Register Field Descriptions ...112
Table 6-29: Performance Counter Register Field Descriptions ...114
Table 6-30: DErrCtl Register Field Descriptions...115
Table 6-31: IErrCtl Register Field Descriptions ..115
Table 6-32: CacheErr Register Field Descriptions...116
Table 6-33: ITagLo Register Field Descriptions..117
Table 6-34: IDataLo Register Field Descriptions ..117
Table 6-35: DTagLo Register Field Descriptions ..118
Table 6-36: DDataLo Register Field Description ..119
Table 6-37: ITagHi Register Field Descriptions ..119
Table 6-38: IDataHi Register Field Descriptions...120
Table 6-39: DTagHI Register Field Descriptions ..120
Table 6-40: DDataHi Register Field Description...120
Table 6-41: ErrorEPC Register Field Description..121
Table 6-42: DESAVE Register Description...121
Table 6-43: CP0 Hazard Spacing ...122
Table 6-44: CP1 Registers ...122
Table 6-45: CP1 Register Field Types ...123
Table 6-46: FIR Register Field Descriptions..123
Table 6-47: FCCR Register Field Descriptions..125
Table 6-48: FEXR Register Field Descriptions..125
Table 6-49: FENR Register Field Descriptions..125
Table 6-50: FCSR Register Field Descriptions ...126
Table 7-1: Instruction and Data Cache Attributes ...129
Table 8-1: Request Encoding ..140
Table 8-2: Encoding of RQS[4:3] for Processor Read Requests ...141
Table 8-3: Encoding of RQS[1:0] for Processor Block Read Requests ...141
Table 8-4: Encoding of RQS[2:0] for Processor D/S/P Word Read Requests ..141
Table 8-5: Encoding of RQS[4:3] for Processor Write Requests...142
Table 8-6: Encoding of RQS[1:0] for Processor Block Write Requests ..142
Table 8-7: Encoding of RQS[2:0] for Processor D/S/P Word Write Requests ..142
Table 8-8: Encoding of RQS[2:0] for a Processor Uncached Accelerated Block Write Request................................
Table 8-9: Encoding of RQS[1:0] for External Intervention Requests ...143
Table 8-10: Encoding of the C[1:0] Field ..144
Table 8-11: Encoding of the DS[4:0] Field..144
Table 8-12: Conflict Resolution ..151
Table 8-13: Acceptable Responses to External Requests...152
Table 8-14: 20Kc System Interface Address and Data Transfer Requirements...155
Table 8-15: Processor Address/Data Bus and Corresponding Parity Bit ...155
Table 8-16: System Address Bus and Check Bits ..156
Table 8-17: Request Encoding ...157
Table 8-18: Encoding of RQS[4:3] for Processor Read Requests ..157
Table 8-19: Encoding of RQS[1:0] for Processor Block Read Requests ...158
Table 8-20: Encoding of RQS[2:0] for Processor D/S/P Word Read Requests...158
Table 8-21: Encoding of RQS[4:3] for Processor Write Requests...159
Table 8-22: Encoding of RQS[1:0] for Processor Block Write Requests ..159
Table 8-23: Encoding of RQS[2:0] for Processor D/S/P Word Write Requests ..159
Table 8-24: Encoding of RQS[2:0] for Processor Uncached Accelerated Write Requests ..160
Table 8-25: Encoding of RQS[1:0] for External Intervention Requests ..160
Table 8-26: Encoding of the C[1:0] Field ..161
12 MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

...183

...
Table 8-27: Encoding of the DS[4:0] Field ...161
Table 8-28: 20Kc Core Signal Direction Key ..169
Table 8-29: Signal Prefix Key..169
Table 8-30: 20Kc Core Signal Descriptions...169
Table 9-1: Clock Multiplier Ratios...175
Table 11-1: Overview of Coprocessor 0 Registers for EJTAG ...183
Table 11-2: Overview of Debug Control Register as Memory-Mapped Register for EJTAG
Table 11-3: Overview of Instruction Hardware Breakpoint Registers ..184
Table 11-4: Overview of Data Hardware Breakpoint Registers ..184
Table 11-5: Overview of Test Access Port Registers ..185
Table 11-6: Register Field Read/Write Notations ...186
Table 11-7: Presence of dseg Segment ...187
Table 11-8: Physical Address and Cache Attribute for dseg, dmseg, and drseg ...187
Table 11-9: Access to dmseg Address Range ...188
Table 11-10: Access to drseg Address Range ...188
Table 11-11: Debug Exception Vector Locations ..190
Table 11-12: Exception Handling in Debug Mode ..194
Table 11-13: Coprocessor 0 Registers for EJTAG ..198
Table 11-14: DCR Register Field Descriptions..199
Table 11-15: Instruction Breakpoint Register Summary..201
Table 11-16: Data Breakpoint Register Summary ..201
Table 11-17: Instruction Breakpoint Condition Parameters...202
Table 11-18: Data Breakpoint Condition Parameters ...203
Table 11-19: Behavior on Precise Exceptions from Data Breakpoints ...205
Table 11-20: Rules for Update of BSn Bits on Precise Exceptions from Data Breakpoints ..205
Table 11-21: Rules for Update of BSn Bits on Data Triggerpoints ..207
Table 11-22: Instruction Breakpoint Register Mapping ..207
Table 11-23: IBS Register Field Descriptions ...208
Table 11-24: IBAn Register Field Descriptions ..208
Table 11-25: IBMn Register Field Descriptions ...209
Table 11-26: IBASIDn Register Field Descriptions ...209
Table 11-27: IBCn Register Field Descriptions ..210
Table 11-28: Data Breakpoint Register Mapping ...210
Table 11-29: DBS Register Field Descriptions ...211
Table 11-30: DBAn Register Field Descriptions ..212
Table 11-31: DBMn Register Field Descriptions ..212
Table 11-32: DBASIDn Register Field Descriptions ..212
Table 11-33: DBCn Register Field Descriptions ...213
Table 11-34: DBVn Register Field Descriptions ..214
Table 11-35: TAP Instruction Overview ...218
Table 11-36: EJTAG TAP Data Registers ..220
Table 11-37: Device ID Register Field Descriptions ..220
Table 11-38: Implementation Register Field Descriptions ...221
Table 11-39: Data Register Field Descriptions ...222
Table 11-40: Data Register Contents ..223
Table 11-41: Address Register Field Descriptions ..224
Table 11-42: EJTAG Control Register Field Descriptions ...225
Table 11-43: Combinations of ProbTrap and ProbEn ...228
Table 11-44: Fastdata Register Field Description ..228
Table 11-45: Operation of the FASTDATA Access ..229
Table 11-46: Bypass Register Field Description ...230
Table 12-1: SysAD[31:0] Encoding for Address/Command Cycles ..235
Table 12-2: SysAD[31:0] Encoding for Write Data Cycles...237
Table 12-3: EB_SysADP[3:0] Encoding for Write Data Cycles ..237
Table 12-4: EB_PrcAD[31:0] Encoding for Read Data Cycles...238
MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10 13

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

..265

91
Table 12-5: EB_PrcADP[3:0] Encoding for Read Cycles ..238
Table 12-6: Cache Test Mode Read Latency ...239
Table 12-7: Normal Write Command ..239
Table 12-8: Chip-Level Memory BIST Interface for the 20Kc Processor ...242
Table 12-9: Status and Progress Indications ..244
Table 13-1: CPU Load, Store, and Memory Control Instructions ...249
Table 13-2: CPU Arithmetic Instructions...250
Table 13-3: CPU Logical Instructions..250
Table 13-4: CPU Move Instructions...251
Table 13-5: CPU Shift Instructions ..251
Table 13-6: CPU Branch and Jump Instructions..252
Table 13-7: CPU Trap Instructions ..252
Table 13-8: Obsolete Branch Instructions..253
Table 13-9: Embedded Application Instructions..253
Table 13-10: FPU Load and Store Instructions..255
Table 13-11: FPU Arithmetic Instructions ...256
Table 13-12: FPU Move Instructions ...256
Table 13-13: FPU Convert Instructions ...257
Table 13-14: FPU Branch Instructions...258
Table 13-15: Obsolete FPU Branch Instructions..258
Table 13-16: Privileged Instructions ..258
Table 13-17: EJTAG Support Instructions...259
Table 13-18: Symbols Used in the Instruction Encoding Tables ...259
Table 13-19: MIPS64 Encoding of the Opcode Field ..260
Table 13-20: MIPS64 SPECIAL Opcode Encoding of Function Field ...260
Table 13-21: MIPS64 REGIMM Encoding of rt Field ..261
Table 13-22: MIPS64 SPECIAL2 Encoding of Function Field...261
Table 13-23: MIPS64 MOVCI Encoding of tf Bit ...261
Table 13-24: MIPS64 COPz Encoding of rs Field...262
Table 13-25: MIPS64 COPz Encoding of rt Field When rs=BCz..262
Table 13-26: MIPS64 COP0 Encoding of rs Field...262
Table 13-27: MIPS64 COP0 Encoding of Function Field When rs=CO ...263
Table 13-28: MIPS64 COP1 Encoding of rs Field...263
Table 13-29: MIPS64 COP1 Encoding of Function Field When rs=S ..264
Table 13-30: MIPS64 COP1 Encoding of Function Field When rs=D..264
Table 13-31: MIPS64 COP1 Encoding of Function Field When rs=W or L ...265
Table 13-32: MIPS64 COP1 Encoding of Function Field When rs=PS ..265
Table 13-33: MIPS64 COP1 Encoding of tf Bit When rs=S, D, or PS, Function=MOVCF ...
Table 13-34: MIPS64 COP1X Encoding of Function Field ..266
Table 13-35: PREF Hint Field Encodings ...268
Table 13-36: Usage of Effective Address ..271
Table 13-37: Encoding of Bits[17:16] of CACHE Instruction ..272
Table 13-38: Encoding of Bits [20:18] of the CACHE Instruction ...273
Table 14-1: Flushing of Results ...285
Table 14-2: Denorm/Tiny Handling for All Combinations of FS/FO/FN ...286
Table 14-3: Denormal Operand Handling..288
Table 14-4: Default Answers for RECIPx, RSQRTx ASE Instructions ..289
Table 14-5: Convert Integer to Float: CVT.[DS].[WL] ...290
Table 14-6: Convert Float to Int: CVT/ROUND/CEIL/FLOOR/TRUNC/.[WL].[DS]...2
14 MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

 the

y
ully
and
, one
tore
ingle

tion

orking
Chapter 1

Introduction to the 20Kc Processor

The MIPS64™ 20Kc™ processor core from MIPS® Technologies, Inc. is a - performance microprocessor core for
integration in SOC applications. The 20Kc core implements the MIPS64 Instruction Set Architecture (ISA) and
MIPS-3D™ Application Specific Extension (ASE) instructions that accelerate 3D geometry processing.

The 20Kc core is a pipelined, dual-issue processor core featuring two integer execution units, a 32-KByte 4-wa
set-associative instruction cache, a 32-KByte non-blocking 4-way set-associative data cache, an MMU with a f
associative 8-entry data TLB (Micro-TLB) and a fully associative 48 dual-entry instruction/data TLB (Joint-TLB),
an IEEE-754-compliant, MIPS-3D-capable floating-point unit. The 20Kc core can issue two integer instructions
integer and one floating-point instruction, or one floating-point operate instruction and one floating-point load/s
instruction per cycle. The pipelined floating-point unit executes single-precision, double-precision, and paired-s
(2-way SIMD single precision floating-point) instructions.

The 20Kc core is designed for easy integration into Application Specific Standard Product (ASSP) and Applica
Specific Integrated Circuit (ASIC) devices. The design of the 20Kc core makes it ideal for applications such as
feature-rich digital set-top boxes, 3D game platforms, mid-range to high-end office automation products, and netw
devices.

This chapter provides an overview of the 20Kc processor and consists of the following sections:

• Section 1.1, "Features"

• Section 1.2, "Architectural Overview"

• Section 1.3, "System Overview"

For 20Kc performance and process details, refer to the appropriate datasheet (Ref [2], Ref [3]).

1.1 Features

The key features of the 20Kc processor core are listed below:

• 64-bit address and data paths that support:

– 32-bit addressing and 32-bit operations

– 32-bit addressing and 64-bit operations

– 64-bit addressing and 64-bit operations

• MIPS64 Compatible Instruction Set:

• Based on MIPS V ISA and backward compatible with MIPS32™ Architecture

• Includes MIPS-3D Application Specific Extension instructions

• Supervisor Mode support for backward compatibility

• Multiply-Accumulate and Multiply-Subtract Instructions

• Targeted Multiply Instruction

• Count Leading One and Count Leading Zero Instructions

• Wait Instruction
MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10 1

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

Chapter 1 Introduction to the 20Kc Processor

redict

d and
• Conditional Move Instruction

• Prefetch Instruction

• Dual-issue superscalar microarchitecture capable of executing:

• Two integer instructions (some pair-wise restrictions)

• One integer and one floating-point instruction

• One floating-point operate instruction and one floating-point load/store instruction

• Seven-stage pipeline for high-frequency operation with dynamic branch and jump prediction to minimize misp
penalties

• Four instructions fetched per cycle and up to two branches dynamically predicted per cycle

• 32-KByte 4-way set-associative instruction cache with way prediction:

• 32-byte cache line

• Line locking support

• Instruction prefetch support

• Way prediction

• 32-KByte 4-way set associative non-blocking data cache:

• 32-byte cache line

• Write-back, write-allocate

• Software programmable to write-through/no-write allocate on a per-page basis

• Data cache hits under misses with up to four outstanding misses

• Critical word first return to minimize blocking delay

• Line locking support

• Non-blocking prefetches

• Uncached accelerated operation gathers and bursts 32 bytes to the core output

• Pipelined integer multiply-accumulate unit

• Integer execution bypasses, load-to-use bypass, and store-to-load bypass

• MIPS-3D-capable floating-point unit:

• Fully pipelined IEEE-754-compliant floating-point unit with the Multiply/Add (MADD) instruction

• 2-way SIMD single-precision (Paired-Single) floating-point instructions

• 13 new MIPS-3D instructions that accelerate 3D geometry processing

• MIPS-3D includes support for pipelined reciprocal and reciprocal square root instructions with both reduce
full precision capabilities

• Programmable Memory Management Unit:

• 40-bit virtual address space

• 36-bit physical address space

• Fully associative 8-entry Micro-TLB for data

• Fully associative 48 dual-entry (even/odd page pair per entry) Joint-TLB for instructions and data

• Variable pages size from 4 KBytes to 16 MBytes in 4x increments

• High-performance unidirectional core interface:
2 MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

1.2 Architectural Overview

ecution

 4-way
ully
liant

er
IMD
• 64-bit parity protected multiplexed address/data input bus

• 32-bit parity protected multiplexed address/data output bus

• Protocol supports split transactions and out-of-order data return

• External interventions and invalidates supported for coherent I/O

• Block reads/writes (32-byte bursts)

• Sub-block and partial word reads/writes

• Credit-based flow control for bus efficiency and elimination of retry overhead

• Core to SOC clock ratios from 2:1 to 8:1

• EJTAG Debug Support with single stepping, instruction and data breakpoints in virtual address space, and ex
from debug probe memory

1.2 Architectural Overview

The 20Kc core is a pipelined, dual-issue microprocessor core featuring two integer execution units, a 32-KByte
set-associative instruction cache, a non-blocking 32-KByte 4-way set-associative data cache, an MMU with a f
associative 8-entry data TLB and a fully associative 48 dual-entry instruction/data TLB, and an IEEE-754-comp
MIPS-3D capable floating-point unit. The 20Kc core can issue two integer instructions, or one integer and one
floating-point instruction, or one floating-point operate instruction and one floating-point load/store instruction p
cycle. The pipelined floating-point unit executes single precision, double precision, and paired-single (2-way S
single precision floating-point) instructions.Figure 1-1 shows a block diagram of the 20Kc processor.

Figure 1-1 20Kc Processor Core Block Diagram

Bus Interface Unit

Instruction

Memory

Fetch Unit

Management Unit

Instruction Cache
4-way 32 KB

Prefetch Buffer

EB_PrcAD EB_SysAD

Branch
History
Table

Return
Prediction

Stack

48 dual entry
Joint-TLB

8 entry
Micro-TLB

Instruction
Dispatch Unit

Data Cache
4-way 32 KB

Write Buffer

with Way Prediction

Fill/Store
Buffer

Load/Store
Unit

Inst. Buffer

Inst. Decode

Inst. Dispatch

Pipe Queue

Integer
Execution Unit

32
 x

 6
4-

bi
t G

P
R

Integer Pipe A
Add/Sub/AddrGen

Shift
Logic

ADD/SUB
Logic

Branch/Jump

Integer Pipe B

Mult/Div

Floating-Point
Unit

32 x 64-bit F
P

R

FP Single 0

ADD/SUB/MUL/MADD
MIPS-3D B

yp
as

s
&

 P
ip

e
F

ile

B
ypass &

 P
ipe F

ile

D
iv/S

qrt/R
ecip/R

sqrt

FP Single 1
ADD/SUB/MUL/MADD

MIPS-3D

Load/Store Control

MMU Control
MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10 3

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

Chapter 1 Introduction to the 20Kc Processor

ss in the
ts, or
o
transfer,

n cache
p to four

uction
ranch
n Fetch
e. The
. It is

 two

line. It
ddress
ntry
tch.

s,
ched
that has
n that
ctural

r that
ution
/sub,
Dual dispatch is possible except when restricted by input dependencies, output dependencies to loads that mi
data cache or in the Micro-TLB, output dependencies to ‘long’ instructions, execution unit resource requiremen
other special instruction serializing conditions. The two-way pipeline is symmetric for most instruction types; tw
instructions of the same type can dispatch in the same dispatch slot. Exceptions to this are loads, stores, control
shift, integer multiply, integer divide, floating-point, and Coprocessor 0 instructions.

The 20Kc core has an internal 32-KByte instruction cache and an internal 32-KByte data cache. The instructio
can handle up to two outstanding misses, or one miss and one instruction prefetch. The data cache can handle u
outstanding load/store/prefetch misses before stalling instruction dispatch.

As shown inFigure 1-1, the 20Kc core is divided into the following eight units:

• Instruction Fetch Unit

• Instruction Dispatch Unit

• Integer Execution Unit

• Floating-Point Unit

• Load/Store Unit

• Memory Management Unit

• Bus Interface Unit

1.2.1 Instruction Fetch Unit

The Instruction Fetch Unit supplies a speculative stream of instructions to the Instruction Dispatch Unit. The instr
stream is speculative because the Instruction Fetch Unit predicts the outcome of branches using a 256-entry b
history table, and predicts the address of jump returns using a four-entry return prediction stack. The Instructio
Unit fetches an address aligned group of four instructions per cycle from an internal 32-KByte Instruction Cach
Instruction Cache is organized as a 4-way set associative cache that utilizes way prediction for read operations
virtually indexed and virtually tagged. A two-entry instruction cache fill buffer (called the prefetch buffer) allows
instruction misses, or one instruction miss and one instruction prefetch.

1.2.2 Instruction Dispatch Unit

The Instruction Dispatch Unit controls the two integer execution pipelines and the floating-point execution pipe
dispatches up to two instructions per cycle to the execution pipelines. The Instruction Dispatch Unit receives a
aligned groups of up to four valid instructions from the Instruction Fetch Unit, and stages them through a two-e
instruction fetch buffer (four instructions per entry) thus allowing the Instruction Fetch Unit to ‘get ahead’ of dispa
The Instruction Dispatch Unit decodes up to two instructions per cycle from the instruction fetch buffer. It then
dispatches the decoded instructions in program order to the execution pipelines (subject to dispatch restriction
instruction dependencies and availability of resources). The Instruction Dispatch Unit keeps track of the dispat
instructions in a pipe queue and in an outstanding load queue. The pipe queue has one entry for each instruction
been dispatched to the execution pipelines. The outstanding load queue has one entry for each load transactio
missed in the Data Cache. Finally, the Instruction Dispatch Unit prioritizes exceptions and maintains the archite
state of the processor.

1.2.3 Integer Execution Unit

The Integer Execution Unit contains the integer register file (GPR),pipefilesto stage results before GPR write-back, two
arithmetic logic units (ALUs), and an integer multiply-divider. Associated with each ALU is a bypass multiplexe
allows results to be forwarded between the ALUs, and from the Load/Store Unit to the ALUs. The Instruction Exec
Unit executes up to two instructions in parallel in two asymmetric pipelines. The ALU in Pipeline A executes add
4 MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

1.2 Architectural Overview

branch
ivider.

e
s to
recision
ingle

order.

iate
ruction
tal
. IEEE
esult

ceives
nit,
ment
ed as
g, and

/Store
cache
ress
. The
cache

a cache
-entry

xternal

e BIU
itional
to satisfy
shift, logic, load/store, and Coprocessor 0 instructions. The ALU in Pipeline B executes add/subtract, logic, and
instructions. Integer multiplies and divides are also dispatched to Pipeline B and executed in the integer multiply-d

1.2.4 Floating-Point Unit

The 20Kc on-chip Floating-Point Unit (FPU) implements the MIPS64 ISA (Instruction Set Architecture) for
floating-point computation and MIPS-3D ASE (Application Specific Extension). The implementation supports th
ANSI/IEEE Standard 754 (IEEE Standard for Binary Floating-Point Arithmetic) and 13 MIPS-3D ASE instruction
enhance geometric computations in 3D-graphics applications. The hardware supports IEEE single- and double-p
data formats, plus the MIPS64 paired single data format. The performance is optimized for single and paired s
precision formats. Most instructions have a one cycle throughput and a four cycle latency (seeSection 3.5,
"Floating-Point Pipeline").

The FPU is tightly coupled to the Instruction Dispatch Unit. Instructions are always dispatched and completed in
The exception model is precise at all times.

The FPU implements the MIPS64 multiply-add (MADD) and multiply-subtract (MSUB) instructions with intermed
rounding after the intermediate multiply function. The result is guaranteed to be the same as executing a MUL inst
and an ADD instruction separately, but the instruction latency, instruction fetch, dispatch bandwidth, and the to
number of register accesses are improved. A fast Flush-to-Zero mode is implemented to optimize performance
denormalized (denorm) input operands are supported by hardware for some instructions. IEEE denormalized r
operands are not supported by hardware.

1.2.5 Load/Store Unit

The Load/Store Unit handles all instructions related to memory transactions and data cache management. It re
load/store instructions from the Instruction Dispatch Unit, load/store addresses from the Instruction Execution U
store data from the Instruction Execution Unit or FPU, address translation information from the Memory Manage
Unit (MMU), and cache refill data from the BIU. The Load/Store Unit has an internal Data Cache which is organiz
a 4-way set associative cache. It is physically indexed and physically tagged. The Load/Store Unit is non-blockin
allows four outstandingData Cache misses to proceed in parallel before stalling instruction dispatch.

1.2.6 Memory Management Unit

The Memory Management Unit (MMU) handles address translation for the Instruction Fetch Unit and the Load
Unit. Since the instruction cache within the Instruction Fetch Unit is virtual, address translation is required only on
misses. The MMU receives instruction cache miss requests from the Instruction Fetch Unit, completes the add
translation in an internal 48 dual-entry Joint-TLB and forwards the miss request to the Bus Interface Unit (BIU)
BIU completes the instruction miss transaction and returns the cache line to the Instruction Fetch Unit. The data
in the Load/Store Unit is physically tagged. Thus, the MMU must complete an address translation for each dat
access. It does this using an 8-entry Micro-TLB in the load-store path. The Micro-TLB is backed up by the 48 dual
Joint-TLB that is shared with instruction fetches that miss in the instruction cache.

1.2.7 Bus Interface Unit

The Bus Interface Unit (BIU) controls the bus interface and manages the flow of read and write data onto the e
bus.

The BIU is responsible for servicing memory requests from the Load/Store Unit and the Instruction Fetch Unit. Th
implements a high performance bus interface using a new bus protocol which retains some features of the trad
SysAD bus used in other MIPS processors. The BIU allows the processor to access external resources needed
MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10 5

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

Chapter 1 Introduction to the 20Kc Processor

’s internal

EJTAG
G uses
 DINT

ftware
asses

transfer
higher
d when

sed in
cache misses and uncached operations, while permitting the system controller to access some of the processors
resources.

1.2.8 EJTAG Unit

In addition to the standard JTAG Boundary Scan, the 20Kc core also supports the EJTAG or Enhanced JTAG.
enhances JTAG by providing a communication interface to a Probe controller for hardware/software debug. EJTA
the five pins of the JTAG interface mentioned above for control and data exchange and an additional pin called
for generating debug exceptions. The 20Kc EJTAG interface is fully compliant withEJTAG Specification, Rev 2.6(Ref
[1]).

To facilitate EJTAG support for a MIPS processor, two instructions have been added to the MIPS ISA: SDBBP (So
Debug Breakpoint) and DERET (Debug Exception Return). SDBBP raises a debug breakpoint exception and p
control to an exception handler. DERET executes a return from a debug exception. Because DERET is a control
instruction, it cannot be placed in the delay slot of any other control transfer instruction. A debug exception has
priority than any other exception except for the Reset exception. Even non-maskable interrupts (NMI) are maske
in Debug Mode.

1.3 System Overview

The 20Kc bus interface supports a unique interconnect protocol that is different from the traditional SysAD bus u
many embedded MIPS processors. One difference includes a 32-bit outbound multiplexed address/data bus.
6 MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

ediate,

uction
used)
Chapter 2

Instruction Set Overview

This chapter provides a general overview on the three CPU instruction set formats of the MIPS architecture: Imm
Jump, and Register. Refer toChapter 13, “Instruction Set Architecture,” for a complete listing and description of
instructions.

This chapter discusses the following topics:

• Section 2.1, "CPU Instruction Formats"

• Section 2.2, "Load and Store Instructions"

• Section 2.3, "Computational Instructions"

• Section 2.4, "Jump and Branch Instructions"

• Section 2.5, "Control Instructions"

• Section 2.6, "Coprocessor Instructions"

• Section 2.7, "Enhancements to the MIPS Architecture"

2.1 CPU Instruction Formats

Each CPU instruction consists of a single 32-bit word, aligned on a word boundary.Figure 2-1 shows the three
instruction formats: immediate (I-type), jump (J-type), and register (R-type). The use of a small number of instr
formats simplifies instruction decoding, allowing the compiler to synthesize more complicated (and less frequently
operations and addressing modes from these three formats as needed.
MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10 7

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

Chapter 2 Instruction Set Overview

he only
 offset.

ister.
d
rmance.

ode.

ddressed
n, the
Figure 2-1 Instruction Formats

2.2 Load and Store Instructions

Load and store are immediate (I-type) instructions that move data between memory and the general registers. T
addressing mode that load and store instructions directly support is base register plus 16-bit signed immediate

2.2.1 Scheduling for Load Use Latencies

In the 20Kc core, the instruction immediately following a load instruction can use the contents of the loaded reg
Hardware interlocks insert additional real cycles required in order to compensate for the longer latency of a loa
instruction. It is recommended, however, that the software schedule for these latencies to achieve higher perfo

2.2.2 Defining Access Types

Access type indicates the size of a core data item to be loaded or stored, set by the load or store instruction opc

Regardless of access type or byte ordering (endianness), the address given specifies the low-order byte in the a
field. For a big-endian configuration, the low-order byte is the most-significant byte; for a little-endian configuratio
low-order byte is the least-significant byte.

op 6-bit operation code

rs 5-bit source register specifier

rt 5-bit target (source/destination) register or branch condition

immediate 16-bit immediate value, branch displacement or address displacement

target 26-bit jump target address

rd 5-bit destination register specifier

sa 5-bit shift amount

funct 6-bit function field

015162021252631

015162021252631

0252631

op rs rt immediate

op target

functop rs rt

1110 6 5

rd sa

R-Type (Register)

J-Type (Jump)

I-Type (Immediate)
8 MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

2.2 Load and Store Instructions

as shown
The access type and the three low-order bits of the address define the bytes accessed within the addressed word
in Table 2-1. Only the combinations shown inTable 2-1 are permissible; other combinations cause address error
exceptions.

Table 2-1 Byte Access within a Word

Access Type
Mnemonic

(Value)

Low-Order
Address Bits

Bytes Accessed

Big Endian (Byte) Little Endian (Byte)

2 1 0 0 1 2 3 4 5 6 7 7 6 5 4 3 2 1 0

Doubleword (7) 0 0 0 0 1 2 3 4 5 6 7 7 6 5 4 3 2 1 0

Septibyte (6)
0 0 0 0 1 2 3 4 5 6 6 5 4 3 2 1 0

0 0 1 1 2 3 4 5 6 7 7 6 5 4 3 2 1

Sextibyte (5)
0 0 0 0 1 2 3 4 5 5 4 3 2 1 0

0 1 0 2 3 4 5 6 7 7 6 5 4 3 2

Quintibyte (4)
0 0 0 0 1 2 3 4 4 3 2 1 0

0 1 1 3 4 5 6 7 7 6 5 4 3

Word (3)
0 0 0 0 1 2 3 3 2 1 0

1 0 0 4 5 6 7 7 6 5 4

Triplebyte (2)

0 0 0 0 1 2 2 1 0

0 0 1 1 2 3 3 2 1

1 0 0 4 5 6 6 5 4

1 0 1 5 6 7 7 6 5

Halfword (1)

0 0 0 0 1 1 0

0 1 0 2 3 3 2

1 0 0 4 5 5 4

1 1 0 6 7 7 6

Byte (0)

0 0 0 0 0

0 0 1 1 1

0 1 0 2 2

0 1 1 3 3

1 0 0 4 4

1 0 1 5 5

1 1 0 6 6

1 1 1 7 7
MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10 9

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

Chapter 2 Instruction Set Overview

ved
d LO

If the
his

delay
n in

th of
he

d Link
purpose
2.3 Computational Instructions

Computational instructions can be either in register (R-type) format, in which both operands are registers, or in
immediate (I-type) format, in which one operand is a 16-bit immediate.

Computational instructions perform the following operations on register values:

• Arithmetic

• Logical

• Shift

• Multiply

• Divide

These operations fit in the following four categories of computational instructions:

• ALU Immediate instructions

• Three-operand Register-type Instructions

• Shift Instructions

• Multiply and Divide Instructions

2.3.1 Multiply and Divide Instructions

Certain multiply instructions in the integer pipeline are different in that the product of the multiply instruction is sa
in the HI and LO registers and not in the general purpose registers. The data can be transferred from the HI an
registers to the general purpose registers via the MFHI (move from HI) and MFLO (move from LO) instructions.
multiply instruction is followed by an MFHI or MFLO before the product is available, the pipeline interlocks until t
product does become available.

2.4 Jump and Branch Instructions

Jump and branch instructions change the control flow of a program. All jump and branch instructions occur with a
of one instruction: that is, the instruction immediately following the jump or branch (this is known as the instructio
thedelay slot) always executes while the target instruction is being fetched from storage.

2.4.1 Overview of Jump Instructions

Subroutine calls in high-level languages are usually implemented with Jump or Jump and Link instructions, bo
which are J-type instructions. In J-type format, the 26-bit target address shifts left two bits and combines with t
high-order four bits of the current program counter to form an absolute address.

Returns, dispatches, and large cross-page jumps are usually implemented with the Jump Register or Jump an
Register instructions. Both are R-type instructions that take the 64-bit address contained in one of the general-
registers.

For a list of the jump instructions, refer toTable 13-6 on page 252.
10 MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

2.5 Control Instructions

to the
n.

er to
2.4.2 Overview of Branch Instructions

All branch instruction target addresses are computed by adding the address of the instruction in the delay slot
16-bitoffset (shifted left two bits and sign-extended to 64 bits). All branches occur with a delay of one instructio

If a conditional branch likely is not taken, the instruction in the delay slot is nullified.

Branches, jumps, ERET, and DERET instructions should not be placed in the delay slot of a branch or jump.

2.5 Control Instructions

Control instructions allow the software to initiate traps; they are either R-type or I-type.

2.6 Coprocessor Instructions

CP0 instructions perform operations on the System Control Coprocessor registers to manipulate the memory
management and exception handling facilities of the processor. Refer toChapter 13, “Instruction Set Architecture,”for
a listing of CP0 instructions.

2.7 Enhancements to the MIPS Architecture

The 20Kc core implements additional instructions over and above those indicated in the MIPS documents. Ref
Chapter 13, “Instruction Set Architecture,” for a complete list of these instructions.
MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10 11

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

Chapter 2 Instruction Set Overview
12 MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

wing

 order.
pleted
 data

 for

eak
Chapter 3

Pipeline

This chapter describes the seven-stage pipeline contained within the 20Kc core. This chapter contains the follo
sections:

• Section 3.1, "Pipeline Overview"

• Section 3.2, "Fetch Pipeline"

• Section 3.3, "Dispatch Pipeline"

• Section 3.4, "Integer and Load/Store Pipelines"

• Section 3.5, "Floating-Point Pipeline"

• Section 3.6, "Instruction Latencies and Repeat Rates"

• Section 3.7, "Instruction Fetch Rules"

• Section 3.8, "Instruction Dispatch Rules"

• Section 3.9, "Dispatch of Privileged Instructions"

3.1 Pipeline Overview

The seven main pipeline stages are listed below. Thebold capital letter is the stage nickname.

• Fetch (F)

• Validate (V)

• Decode (D)

• Register-fileRead (R)

• eXecute (X)

• dataCache read (C)

• register fileWrite (W)

The pipeline is divided into the four pipeline segments shown inFigure 3-1.

• Fetch pipeline

• Dispatch pipeline

• Integer execute and load/store pipelines (2)

• Floating-point pipeline

Instructions are fetched in program order and dispatched to the integer and floating-point pipelines in program
Instructions may complete out of order, but results written into the integer and floating-point register files are com
in program order. The uniform pipeline flow is modified for loads and stores that miss in the Micro-TLB or in the
cache, for integer multiplies and divides, for double-precision floating-point multiply or multiply-add operations,
floating-point divides and square-roots, and for floating-point special case operations.

Most exceptions and interrupts are precise. Note that the bus error, data parity error, and EJTAG data value br
exceptions are imprecise. Exceptions are synchronized at the integer register file write stage (W stage). Floating-point
MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10 13

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

Chapter 3 Pipeline
exceptions are predicted during the floating-point executionI stage (thus lining up with theW stage) and finalized during
the floating-point register file write stage (Z stage).

Figure 3-1 shows a diagram of the 20Kc processor pipeline.

Figure 3-1 20Kc Core Pipeline

3.2 Fetch Pipeline

The Fetch pipeline consists of two stages:Fetch andValidate.

Fetch pipeline

Fetch Validate

Dispatch pipeline

Decode regRead

Integer execute pipeline A

eXec Cache regWrite add/sub/shift/move/logic/Coprocessor 0

load/store (Micro-TLB hit, Data Cache hit)

Load/Store (Micro-TLB miss,
Joint-TLB hit, Data Cache hit)

pipeline extension

non-blocking load handling in the background

Cache regWrite

Cache

Cache Cache

Cache

regWrite

regWrite

BiureQuest Miss

Integer execute pipeline B

add/sub/move/logic/correctly predicted Jump or BrancheXec

Fetch Decode

eXec2

regWrite

eXec3

execM execI execKexecJ

mispredicted Jump or Branch; fetch of target instructions

special long-instruction handling

integer multiply/divideregWriteCache

Floating-point Pipeline

regZrite

M stage used twice (execM and execN)

execN execI execJ execK regZrite
double-precision floating-point
multiply/multiply-add

Joint-TLB Update

cache hit

Cache reQuestJoint-TLB Update Miss Cache regWriteBiu

(Micro-TLB hit
Data Cache miss)

Load/Store (Micro-TLB miss, Joint-TLB hit, Data Cache miss)

Load/Store

Indicates conditional
stage

Indicates memory or
long instruction
latency
14 MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

3.3 Dispatch Pipeline

ines
e

t half
uffer.

of the

rce
3.2.1 F Stage: Instruction Fetch

During the InstructionFetch stage, the following events occur:

• Instruction fetch from the instruction cache

• Next fetch address prediction

3.2.2 V Stage: Validate

During theValidate stage, the following events occur:

• Instruction validation

• Next fetch address calculation

• Branch prediction

• Subroutine return address prediction

Instructions are fetched from the instruction cache in a “bundle” of four 32-bit words. Instruction validation determ
which instructions in the bundle are valid. For example, for a jump to an instruction in the middle of a bundle, th
preceding instructions in the bundle are marked invalid.

3.3 Dispatch Pipeline

The Dispatch pipeline consists of two stages:Decode and Register FileRead.

The Instruction Dispatch Unit reads up to two instructions per cycle from the Instruction Fetch Unit during the firs
of theDecode stage (D stage). It decodes the two instructions and writes the decoded instruction into a decode b

The read of the register file is done during the first half of the register fileRead stage (R stage).The Instruction Execution
Unit and the Floating-Point Unit deliver instruction source operands to the execution units during the second half
R stage. The source operands are forwarded from one of the following:

• The register files

• One of the two “pipefile” registers that pipeline write data for the register file write

• Bypassed result from one of the execution units

• Load data from the Load/Store Unit

Figure 3-2 shows a diagram of the dispatch pipeline.

Figure 3-2 Dispatch Pipeline

The 20Kc core dispatches up to two instructions per cycle from the decode buffer. Dispatch is restricted by sou
operand availability, execution unit resources, and special instruction dispatch restrictions.

Decode regRead

From V stage
MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10 15

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

Chapter 3 Pipeline

g the
es,
3.3.1 D Stage: Instruction Decode

During the InstructionDecode stage, the following events occur:

• Instruction decode

• Source register input dependency check

• Destination register output dependency check

• Dispatch restriction checks

3.3.2 R Stage: Register File Read

During the Register FileRead stage, the following events occur:

• Instruction dispatch

• Register file read (GPR/FPR)

• Pipefile read

• Source operand bypass

3.4 Integer and Load/Store Pipelines

The following stages control the integer, branch, and load/store operations.

The Instruction Execution Unit initiates the execution of integer, control transfer, and load/store instructions durin
first half of the eXecution stage (X stage). It completes all integer instructions with the exception of multiplies, divid
loads, and stores during the second half of theX stage. It then forwards the results to dependent instructions (in theR
stage), and writes them into the two pipefiles in theGPR. It stages the results in the pipefiles through the dataCache read
stage (C stage) and writes them in program order into theGPR during the integer registerWrite stage (W stage).

3.4.1 Integer Pipeline A

Integer instructions are executed in one of two asymmetric pipelines. Integer Pipeline A can execute:

• adds

• subtracts

• shifts

• logic operations

• moves to and from Coprocessor 0 and Coprocessor 1

• address generation for loads and stores

Integer Pipeline A, in conjunction with Integer Pipeline B, can execute conditional moves.

Figure 3-3 shows a diagram of Integer Pipeline A.
16 MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

3.4 Integer and Load/Store Pipelines

continue
s the

s and
Figure 3-3 Integer Execution Pipeline A

3.4.1.1 X Stage: Execution

During the Execution stage, the following events occur:

• Execution of integer add, subtract, logic, shift, conditional moves

• Bypass of integer results to dependent instructions

• Address generation for loads and stores

• Micro-TLB lookup for loads and stores

3.4.1.2 C Stage: Cache

During the DataCache stage, the following events occur:

• Data Cache access

• Load data write into pipefiles

• Load data forwarding to dependent instructions

3.4.1.3 W Stage: Register Write

During the RegisterWrite stage, the following events occur:

• Result written to theGPR

• Resolution of exceptions

3.4.1.4 Loads and Stores

The 20Kc core can have up to four outstanding loads, stores, or prefetches that miss in the data cache. It can
instruction dispatch until it encounters an input or an output dependency to a missing load, or until it encounter
fourth missing load, store, or prefetch.

Loads and stores require two or more cycles to complete. The 20Kc core calculates the virtual address for load
stores and looks up the address translation in the Micro-TLB in the eXecution stage (X stage). A hit in the Micro-TLB

from R stage
Integer execute pipeline A

eXec Cache regWrite add/sub/shift/move/logic/Coprocessor 0

load/store (Micro-TLB hit, Data Cache hit)

Load/Store (Micro-TLB miss,
Joint-TLB hit, Data Cache hit)

pipeline extension

non-blocking load handling in the background

Cache regWrite

Cache

Cache Cache regWrite

regWrite

BiureQuest Miss

Joint-TLB Update

cache hit

Cache reQuestJoint-TLB Update Miss Cache regWriteBiu

(Micro-TLB hit
Data Cache miss)

Load/Store (Micro-TLB miss, Joint-TLB hit, Data Cache miss)

Load/Store
MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10 17

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

Chapter 3 Pipeline

uctions

e

al

e
is stage

ycles

quent
allows the 20Kc core to access the data cache during the dataCache read stage (C stage), and to forward the load data
to the integer and floating-point pipefiles and to dependent instructions in the integer pipelines. Dependent instr
in the floating-point pipeline receive the forwarded data in the regWrite stage (W stage) of the load instruction.

Loads and stores that miss in the Micro-TLB cause a two-cycle pipeline extension. The 20Kc core accesses th
Joint-TLB during theTLB lookup stage (T stage), and updates the Micro-TLB during the Micro-TLBUpdate stage (U
stage). The data cache is then accessed during theC stage. The following subsections describe the above condition
stages.

3.4.1.5 T Stage: TLB Lookup

TheT stage is a conditional stage that only occurs on a Micro-TLB miss. During theTLB Lookup stage, a Joint-TLB
lookup is performed for loads and stores that miss in the Micro-TLB.

3.4.1.6 U Stage: Update

TheU stage always follows theT stage and only occurs if theT stage occurs. During theUpdate stage, the following
events occur:

• Update from Joint-TLB to Micro-TLB

• Regenerate cache address

3.4.1.7 Q Stage: Memory Request

TheQ stage is a conditional stage that occurs after theC stage and performs a memory request from the Load/Stor
buffer to the BIU whenever a load or store misses in the Data Cache. If the load or store hits in the Data Cache, th
is bypassed.

3.4.1.8 B Stage: BIU Refill

TheB stage always follows theQ stage and occurs after the data is retrieved from system memory. The number of c
between theQ andB stages is variable and is dependent on memory latency. During theBIU Refill stage, the data
received from memory is forwarded to the load/store unit. The load/store unit refills the fill/store buffers in a subse
cycle.

3.4.2 Integer Pipeline B

Integer Pipeline B also uses theX, C, andW pipeline stages and can execute:

• adds

• subtracts

• logic operations

• integer multiplies and divides

• control transfer instructions

Integer Pipeline A, in conjunction with Integer Pipeline B, can execute conditional moves.

Figure 3-4 shows a diagram of Integer Pipeline B.
18 MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

3.4 Integer and Load/Store Pipelines

e.
nteger
:

ts the
control
ctions
Figure 3-4 Integer Execution Pipeline B

3.4.2.1 X Stage: Execution

During the Execution stage, the following events occur:

• Execution of integer add, sub, logic, conditional move

• Resolution of control transfers

• Bypass of integer results to dependent instructions

• First cycle of integer multiply and divide

3.4.2.2 C Stage: Cache

During the DataCache stage, the following event occurs:

• Result ofX stage calculation written into pipefiles

3.4.2.3 W Stage: Register Write

During the RegisterWrite stage, the following events occur:

• Result written to theGPR

• Resolution of exceptions

3.4.2.4 Integer Multiply and Divide

Integer multiply and divide operations begin in the eXec stage (X stage) and require more than two cycles to complet
Integer word multiplies are pipelined, and can be dispatched every other cycle. Integer double multiplies and all i
divides are not pipelined, and thus the 20Kc core stalls dispatch if it encounters any of the following operations

• integer multiply

• double multiply

• divide while executing any multiply or divide

• integer double multiply or divide while executing any multiply or divide

3.4.2.5 Control Transfer Instructions

For control transfer instructions, a mispredict is signalled if the prediction is incorrect, and the 20Kc core restar
instruction fetch from the correct instruction address after the execution of the control transfer instruction. The
transfer mispredict latency (the minimum delay between fetching the control transfer and when the target instru
are fetched if there is a mispredict) is five cycles.

from R stage

Cache

Integer Execute Pipeline B

add/sub/move/logic/correctly predicted Jump or BrancheXec

Fetch Decode

eXec2

regWrite

eXec3

mispredicted Jump or Branch; fetch of target instructions

special long-instruction handling

integer multiply/divideregWriteCache
MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10 19

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

Chapter 3 Pipeline

c Unit
an

age).
,
exec

les to

tched
tions
d
ction

nto the

tions.
latency.

 the

 both to
3.4.2.6 Conditional Moves

Conditional moves are single-dispatch instructions. The register condition is always tested in the Arithmetic Logi
(ALU) in Pipeline B, the actual move is done in the ALU in Pipeline A. The condition is either determined from
integer register or from one or several of eight floating-point condition code bits (CCs).

3.5 Floating-Point Pipeline

The Floating-Point Unit (FPU) initiates the execution of floating-point instructions during the execM stage (M st
Execution takes four cycles (M stage,I stage,J Stage, andK stage) for all instructions except double-precision multiply
double precision multiply-add, divide, square root, and instructions with special case operands or results. An extraN
stage (N stage) is required for all double-precision multiplies and multiply-adds and for some of the geometry
instructions. Divide, Square Root, Reciprocal, and Reciprocal Square Root instructions take more than five cyc
complete.

Figure 3-5 shows a diagram of the floating-point pipeline.

Figure 3-5 Floating-Point Pipeline

The floating-point unit is pipelined, and a new single-precision instruction or double-precision add can be dispa
every cycle. A double-precision multiply or multiply-add can be dispatched every other cycle. Floating-point excep
are predicted at the end of the second floating-point execute stage (I stage). This aligns them with exceptions detecte
within the integer pipelines. If a floating-point exception is predicted, the 20Kc core stalls dispatch until the instru
that caused the predicted exception has completed.

Floating-point loads differ from integer loads only in that the load data returned from the data cache is written i
pipefile in theFPRrather than into the pipefile in theGPR. Load data is written into the pipefile during the end of theI
stage (which lines up with the end of theC stage). It is then staged in the pipefile through theJ stage andK stage, and
written into theFPRduring theZ stage. Floating-point load data cannot be directly bypassed to dependent instruc
It must be written into the pipefile, and bypassed from the pipefile, thus adding one extra stage to the load to use

Moves between theGPR andFPRare handled using the integer and floating-point load/store paths. A move from
GPR to theFPR has a latency of three cycles. Similarly, a move from theFPR to theGPR has a latency of two cycles.

Conditional moves between floating-point registers that are based on integer register conditions are dispatched
the floating-point unit and the integer unit. The integer unit determines the integer register condition, and the
floating-point unit completes the actual move.

3.5.1 M Stage: FP Multiplier Array - First Pass

During the Multiplier Array - First Pass stage, the following events occur:

• First cycle through the multiplier array (M)

• Exponent calculation

from R stage

execM execI execKexecJ

Floating-point Pipeline

regZrite

M stage used twice (execM and execN)

execN execI execJ execK regZrite
double-precision floating-point
multiply/multiply-add
20 MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

3.6 Instruction Latencies and Repeat Rates

he
 ‘repeat
3.5.2 N Stage: FP Multiplier Array - Second Pass

During the Multiplier Array - Second Pass stage, a second pass occurs through the multiplier array (N).

3.5.3 I Stage: FP Multiply Completion

During theI stage, the following events occur:

• Calculation of rounded multiply result

• Prediction of possible exceptions

3.5.4 J Stage: FP Add

During theJ stage, the following events occur:

• Alignment shift

• Result add

• Leading zero prediction

3.5.5 K Stage: FP Normalization

During theK stage, the following events occur:

• Final Rounding

• Normalization

• Final resolution of exceptions

3.5.6 Z Stage: FPR Write

During the FPR Write (regZrite) stage, the result is written to theFPR.

3.6 Instruction Latencies and Repeat Rates

Table 3-1 contains the instruction latencies and repeat rates for the 20Kc core. In this table, ‘Latency’ refers to t
number of cycles necessary for the first instruction to produce the result needed by the second instruction. The
rate’ refers to the maximum rate at which an instruction can be executed per processor core cycle.

Table 3-1 Instruction Groups, Latencies, and Repeat Rates

Instruction
Group Included Instructions Latency

Repeat
Rate

Integer
AND[I], NOR, OR[I], XOR[I], LUI, [D]ADD[I][U], [D]SUB[U], SLT[I][U],

[D]CLO, [D]CLZ, SSNOP
1 1

cMove MOVN, MOVZ, MOVF, MOVT 1 1

Shift
[D]SLL, DSLL32, [D]SLLV, [D]SRL, DSRL32, [D]SRLV

[D]SRA, DSRA32, [D]SRAV

1

1

1

1

MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10 21

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

Chapter 3 Pipeline
MulDiv

MTHI, MTLO

MFHI, MFLO

MULT[U], MADD[U], MSUB[U],

DMULT[U]

MUL,

DIV[U]

DDIV[U]

3

1

4

7

4

13..42

13..72

3

3

2

7

2

13..42

13..72

Branch

BEQ[L], BGEZ[AL][L], BGTZ[L], BLEZ[L], BLTZ[AL][L], BNE[L],

J[AL][R],

BC1F[L], BC1T[L]

0, 4*

0, 4*

0, 4*

1

1

1

Load/Store

LB[U], LH[U], LW[U], LD,

LWL, LWR, LDL, LDR,

SB, SH, SW, SD, SWL, SWR, SDL, SDR,

SC[D], LL[D],

LD[U][X]C1, LW[X]C1,

SD[U][X]C1, SW[X]C1,

PREF[X], SYNC

2

4

2

2

3

3

1

1

1

1

1

1

1

1

Trap
BREAK, SYSCALL,

TEQ[I], TGE[I][U], TLT[I][U], TNE[I]

3

1, 4*

1

1

* Latency = 0 or 1 if branch/jump/conditional trap predicted correctly. Latency = 4 if branch/jump/conditional trap predicted
incorrectly.

Table 3-1 Instruction Groups, Latencies, and Repeat Rates (Continued)

Instruction
Group Included Instructions Latency

Repeat
Rate
22 MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

3.6 Instruction Latencies and Repeat Rates
Fp

ABS.[S,D,PS], MOV.[S,D,PS], NEG.[S,D,PS], ADD.[S,D,PS],
SUB.[S,D,PS], ADDR.PS, C.cond.[S,D,PS], MUL.[S,PS]

4 1

MULR.[S,PS], MADD.[S,PS], MSUB.[S,PS], NMADD.[S,PS],
NMSUB.[S,PS], P[UL][UL].PS, CABS.cond.[S,D,PS]

4 1

CVT.D.S, CVT.PS.PW, CVT.[S,D].[W,L] 4 1

CVT.S.D, CVT.PW.PS, CVT.[W,L].[S,D], CEIL.[W,L].[S,D],
FLOOR.[W,L].[S,D], ROUND.[W,L].[S,D], TRUNC.[W,L].[S,D]

5 1

MUL.D 5 2

MADD.D, MSUB.D, NMADD.D, NMSUB.D, RECIP1.[S,D,PS],
RSQRT1.[S,D,PS], RECIP2.D, RSQRT2.D

5 2

RECIP2.[S,PS], RSQRT2.[S,PS] 4 1

RECIP.S 13 13

RECIP.D 25 25

RSQRT.S 17 17

RSQRT.D 35 35

DIV.S, SQRT.S 17 17

DIV.D, SQRT.D 32 32

FpMove

MTC1

MFC1

CTC1

CFC1

3

2

4

2

1

1

3

1

Priv

CACHE,

ERET, DERET, SDBBP,

TLBP, TLBR, TLBWI, TLBWR,

WAIT,

[D]MTC0

[D]MFC0

min 3

3

4

-

3

2

min 3

1

4

-

1

1

Table 3-1 Instruction Groups, Latencies, and Repeat Rates (Continued)

Instruction
Group Included Instructions Latency

Repeat
Rate
MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10 23

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

Chapter 3 Pipeline

own in
3.7 Instruction Fetch Rules

Instructions are fetched from the instruction cache in groups of four instructions as shown inFigure 3-6. The group of
four instructions is aligned to one of two groups of four instructions within a 32-byte cache line.

Figure 3-6 Instruction Fetch Groups

A branch target within an instruction group causes invalid instructions to be fetched up to the branch target as sh
Figure 3-7.

Figure 3-7 Branch Target Within Instruction Group

..111 ..110 ..101 ..100 ..011 ..010 ..001 ..000

32-byte Instruction Cache Line

inst 3 inst 2 inst 1 inst 0

Four Instruction Fetch Groups

.

.

..111 ..110 ..101 ..100 ..011 ..010 ..001 ..000

Branch Target

inst 3 inst 2 inst 1 inst 0

Valid Instructions

.

.

24 MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

3.7 Instruction Fetch Rules

the

lid
A taken branch within the instruction group causes invalid instructions to be fetched following the delay slot of
branch as shown inFigure 3-8.

Figure 3-8 Taken Branch Within Instruction Group

A taken branch as last instruction in a group causes the following group to include the delay slot as the only va
instruction as shown inFigure 3-9.

Figure 3-9 Taken Branch as Last Instruction in Fetch Group

..111 ..110 ..101 ..100 ..011 ..010 ..001 ..000

Taken Branch

inst 3 inst 2 inst 1 inst 0

Valid Instructions

.

.

..111 ..110 ..101 ..100 ..011 ..010 ..001 ..000

Taken Branch

inst 3 inst 2 inst 1 inst 0

Valid Instructions

inst 7 inst 6 inst 5 inst 4

Delay Slot

fetch group N

fetch group N+1

.

.

MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10 25

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

Chapter 3 Pipeline

empt is
A taken branch or jump causes a one cycle bubble in instruction fetch as shown inFigure 3-10.

Figure 3-10 Bubble Caused by Taken Branch of Jump Instruction

Up to two instructions are decoded per cycle. Both instructions have to be part of the same fetch group. An att
made to always have two decoded instructions available for instruction dispatch.Figure 3-11 shows the decode
restrictions.

Figure 3-11 Decode Restrictions Based on Fetch Groups

Taken Branch

inst 3 inst 2 inst 1 inst 0

Valid Instructions

fetch group N

fetch bubble

..111 ..110 ..101 ..100 ..011 ..010 ..001 ..000 .

.

..111 ..110 ..101 ..100 ..011 ..010 ..001 ..000

inst 3 inst 2 inst 1 inst 0

inst 7 inst 6 inst 5 inst 4

fetch group N

fetch group N+1

decoded in cycle I

decoded in cycle I+1

.

.

26 MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

3.7 Instruction Fetch Rules
An instruction fetch stalls after two instruction groups have been fetched as shown inFigure 3-12.

Figure 3-12 Instruction Stall on Buffer Full

Instruction fetching resumes after all instructions in one of the groups have been decoded as shown inFigure 3-13.

Figure 3-13 Resumption of Instruction Fetch After Stall

..111 ..110 ..101 ..100 ..011 ..010 ..001 ..000

inst 3 inst 2 inst 1 inst 0

inst 7 inst 6 inst 5 inst 4

fetch group N

fetch group N+1

Stall Instruction Fetch

.

.

..111 ..110 ..101 ..100 ..011 ..010 ..001 ..000

inst 7 inst 6 inst 5 inst 4

fetch group N

fetch group N+1

Resume Instruction Fetch

.

.

MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10 27

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

Chapter 3 Pipeline

otation
tched.

 by a
3.8 Instruction Dispatch Rules

Instructions are dispatched in program order from the group of decoded instructions as shown inFigure 3-14.

Figure 3-14 Instructions Dispatched in Program Order

Up to two instructions can be dispatched per cycle as shown inFigure 3-15.

Figure 3-15 Two Instruction Dispatch Limit

Instructions are dispatched according to the static dispatch rules inTable 3-2 unless other dispatch restrictions apply.
Note: 1 and 2 in the table refer to the first and second instructions in the pair being considered for dispatch. The n
"1, 2" in the matrix means both instructions are dispatched, whereas “1” means just the first instruction is dispa
For example, two integers are dispatched together (provided no other restrictions), but if an Integer is followed
cMove, only the Integer is dispatched.

R X C

R X C

D

D R X C

V

D

D

ADD r1, r2, r3

ADD r4, r5, r6

ADD r7, r8, r9

X C W

X C W

R

R X C W

D

D R

D

D R X C

ADD r10, r11, r12

ADD r13, r14, r15

ADD r16, r17, r18

ADD r19, r20, r21

F

F

F

F

F

F

F

V

W

W

WV

V

V

V

V W

D R X C W

D R X C W

ADD r1, r2, r3

ADD r6, r7, r8

D R X C W

D R X C W

ADD r1, r2, r3

ADD r6, r7, r8

D R X C W

D R X C W

ADD r1, r2, r3

ADD r6, r7, r8
28 MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

3.8 Instruction Dispatch Rules

r output
ame
me
Instructions are dispatched only if their input dependencies are expected to be met during theR stage of the pipeline as
shown inFigure 3-16.

Figure 3-16 Dispatch Restrictions Based on Input Dependencies

Figure 3-17shows the dispatch restrictions based on output dependencies. Instructions are dispatched only if thei
dependencies are expected to be met during theR stage of the pipeline. Output dependencies are thus handled the s
way as input dependencies; that is, an instruction that writes into a given register is dispatched following the sa
dispatch rules as an instructions that reads the given register.

Table 3-2 Static Dispatch Rules

Inst2

Inst1 Integer2 cMove2 Shift2 MulDiv 2 Branch2 LdSt2 Trap2 Fp2 FpMove2 Priv2

Integer1 1, 2 1 1, 2 1, 2 1, 2 1, 2 1, 2 1, 2 1, 2 1

cMove1 1 1 1 1 1 1 1 1 1 1

Shift1 1, 2 1 1 1, 2 1, 2 1 1, 2 1, 2 1 1

MulDiv1 1, 2 1 1, 2 1 1 1, 2 1 1, 2 1, 2 1

Branch1 1, 2 1 1, 2 1 1 1, 2 1 1, 2 1, 2 1

LdSt1 1, 2 1 1 1, 2 1, 2 1 1, 2 1, 2 1 1

Trap1 1, 2 1 1, 2 1 1 1, 2 1 1, 2 1, 2 1

Fp1 1, 2 1 1, 2 1, 2 1, 2 1, 2 1, 2 1 1, 2 1

FpMove1 1, 2 1 1 1, 2 1, 2 1 1, 2 1, 2 1 1

Priv1 1 1 1 1 1 1 1 1 1 1

D R X C W

D R X C W

ADD r1, r2, r3

ADD r4, r1, r7

D R X C W

D R X C W

LD r1, r2, r3

ADD r4, r1, r7
MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10 29

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

Chapter 3 Pipeline

a MUL
le
Figure 3-17 Dispatch Restrictions Based on Output Dependencies

Branch and Jump instructions cannot be dispatched until their delay slot has been fetched as shown inFigure 3-18.

Figure 3-18 Dispatch Restrictions Based on Branch Delay Slots

Figure 3-19 shows the dispatch restrictions for multiply instructions. Integer MUL, MULT[U], MADD[U], and
MSUB[U] instructions can be pipelined. MULT[U], MADD[U], and MSUB[U] have a latency of four cycles and a
repetition rate of two cycles.

Figure 3-19 Dispatch Restrictions Relating to MULT

Integer DMULT[U] and [D]DIV[U] cannot be pipelined with any other multiply/divide instructions as shown inFigure
3-20.

Figure 3-20 Dispatch Restrictions Arising From DMULT

Only one instruction having a GPR register result can be dispatched in the second cycle following the dispatch of
instruction as shown inFigure 3-21. A branch and link, or a jump and link cannot be dispatched in the second cyc
following the dispatch of a MUL.

D R X C W

D R X C W

ADD r1, r2, r3

ADD r1, r6, r7

D R X C W

D R X C W

LD r1, r2, r3

ADD r1, r6, r7

R X C W

D R X C W

BR r1, < >

NOP

D

F

F

D R X1

D R

MULT r2, r3

MULT r6, r7

X2 X3 X4

X1 X2 X3 X4

32-bit operands

32-bit operands

D R X1

D R

DMULT r2, r3

MULT r6, r7

X2 X3 X4

X1 X2 X3

X5 X6 X7

X4
30 MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

3.8 Instruction Dispatch Rules

h a

g the
ctions.

int
Figure 3-21 Dispatch Restrictions Arising from MUL Instruction

Figure 3-22shows the dispatch restrictions on MTHI/MTLO instructions. A move to HI/LO cannot be pipelined wit
move from HI/LO. Move to/from HI/LO cannot be pipelined with any integer multiply/divide instructions.

Figure 3-22 Dispatch Restrictions on MTHI/MTLO Instructions

Figure 3-23 shows the dispatch restrictions arising from floating-point double-precision multiply instructions.
Floating-point double-precision multiply and multiply-add instructions cause a one cycle dispatch bubble followin
dispatch of the instruction; they can only be dispatched as the younger (later in program order) of up to two instru

Figure 3-23 Dispatch Restrictions Arising from Floating-Point Double-Precision Multiplies

Figure 3-24 shows the dispatch restrictions on CTC1 and CFC1 instructions. Moves to and from the floating-po
control registers cannot be done until all outstanding floating-point instructions have reached theK stage.

Figure 3-24 Dispatch Restrictions on CTC1 and CFC1

D R X1

D R

MUL r1, r2, r3

ADD r6, r7, r8

X2 X3 X4

X C W

W

D RADD r9, r10, r11 X C W

D R X C W

D R X C W

MTHI r1

MFHI r6

D R X C W

D R

MTHI r1

MADD r6, r7 X1 X2 X3

D R X C W

D R

MTHI r1

MADD r6, r7 X1 X2 X3

X4

X4

D R M

D R

MUL.D f1, f2, f3

ADD r1, r6, r7

I J K

X C W

ZN

D R M I JCop1/Cop1X

D R X C WCTC1/CFC1

K Z
MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10 31

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

Chapter 3 Pipeline

.

3.9 Dispatch of Privileged Instructions

Figure 3-25 shows the dispatch restrictions for privileged instructions. All privileged instructions are single issue

Figure 3-25 Dispatch Restrictions on Privileged Instructions

Figure 3-26 shows the dispatch restrictions for some MTC0 instructions. Moves to theStatus, Cause, EntryHi, and
Debug registers stall dispatch of all subsequent instructions until theW stage of the move.

Figure 3-26 Dispatch Restrictions Arising from Certain MTC0 Instructions

Figure 3-27 shows some additional dispatch restrictions for some MTC0 instructions. Moves to theStatus register and
Debug register cannot be done until all outstanding floating-point instructions have reached theK stage.

Figure 3-27 Dispatch Restrictions on Certain MTC0 Instructions

D R X C WMTC0 < >

D R X C WMTC0 < >

D R X C WMTC0 < >

D R X C W
[D]MTC0 Status, Cause,

D R X C WAll other instructions

EntryHi, Debug

D R M I JCop1/Cop1X

D R X C W[D]MTC0 Status/Debug

K Z
32 MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

g modes
ual

egions,

nd
or is
s

r leaves
as the

mode
hen all
Chapter 4

Memory Management

The 20Kc processor supports three processor operating modes: user, kernel, and supervisor, and two addressin
(32-bit and 64-bit). 32-bit mode is included for compatibility reasons. The 20Kc processor supports a 40-bit virt
address and a 36-bit physical address.

This chapter contains the following sections:

• Section 4.1, "Operating Modes"

• Section 4.2, "Other Modes"

• Section 4.3, "Processor Mode Selection"

• Section 4.4, "Addressing Modes"

• Section 4.5, "Address Space"

• Section 4.6, "Address Segments"

• Section 4.7, "Virtual Address Translation"

• Section 4.8, "Translation Lookaside Buffers"

• Section 4.9, "TLB Instructions"

4.1 Operating Modes

The processor operating modes control the access privileges in the system. This includes access to memory r
registers in the processor, as well as instructions in the ISA. There are three processor operating modes:

• Kernel Mode: This mode enables the highest level of system privilege. Kernel Mode can access all memory a
modify any processor register. The innermost core of the operating system runs in kernel mode. The process
operating in Kernel Mode when the DM bit in theDebugregister is a zero, and any of the following three condition
is true:

– The KSU field in theStatus register contains a value of 002

– The EXL bit in theStatus register is one

– The ERL bit in theStatus register is one

The processor enters Kernel Mode at power-up, or as the result of an interrupt, exception, or error. The processo
Kernel Mode and enters User Mode or Supervisor Mode when all of the above three conditions are false, usually
result of an ERET instruction.

• Supervisor Mode: This mode is used by some layered operating systems. It has fewer privileges than kernel
and is used for less critical sections of the operating system. The processor is operating in Supervisor Mode w
of the following conditions are true:

– The DM bit in theDebug register is a zero

– The KSU field in theStatus register contains 012

– The EXL and ERL bits in theStatus register are both zero
MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10 33

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

Chapter 4 Memory Management

is

ration.

r address
 KX bit.

rror

If 64-bit
the

sults in

as
egisters,
airs of
• User Mode: This mode has the lowest system privilege and it is employed for user programs. The processor
operating in User Mode when all of the following conditions are true:

– The DM bit in theDebug register is a zero

– The KSU field in theStatus register contains 102

– The EXL and ERL bits in theStatus register are both zero

• Debug Mode: The processor is operating in Debug Mode if the DM bit in theDebug register is a one. If the
processor is running in Debug Mode, it has full access to all resources that are available to Kernel Mode ope

4.2 Other Modes

4.2.1 64-bit Address Enable

Access to 64-bit addresses are enabled under any of the following conditions:

• A legal reference to a kernel address space occurs and the KX bit in theStatus register is a one

• A legal reference to a supervisor address space occurs and the SX bit in theStatus register is a one

• A legal reference to a user address space occurs and the UX bit in theStatus register is a one

Note that the operating mode of the processor is not relevant to 64-bit address enables. That is, a reference to use
space made while the processor is operating in Kernel Mode is controlled by the state of the UX bit, not by the

An attempt to reference a 64-bit address space when 64-bit addresses are not enabled results in an Address E
Exception (either AdEL or AdES, depending on the type of reference).

When a TLB miss occurs, the choice of the Exception Vector is also determined by the 64-bit address enable.
addresses are not enabled for the reference, the TLB Refill Vector is used. If 64-bit addresses are enabled for
reference, the XTLB Refill Vector is used.

4.2.2 64-bit Operations Enable

Instructions that perform 64-bit operations are legal under any of the following conditions:

• The processor is operating in Kernel Model, Supervisor Mode, or Debug Mode, as described above

• The PX bit in theStatus register is a one

• The processor is operating in User Mode, as described above, and the UX bit in theStatus register is a one

An attempt to execute an instruction which performs 64-bit operations when such instructions are not enabled re
a Reserved Instruction Exception.

4.2.3 64-bit FPR Enable

Access to 64-bit FPRs is controlled by the FR bit in theStatusregister. If the FR bit is one, the FPRs are interpreted
32 64-bit registers that may contain any data type. If the FR bit is zero, the FPRs are interpreted as 32 32-bit r
any of which may contain a 32-bit data type (W, S). In this case, 64-bit data types are contained in even-odd p
registers.

The operation of the processor is UNPREDICTABLE under any of the following conditions:
34 MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

4.3 Processor Mode Selection

rs

, 10

-bit,

hese
ddresses
• The FR bit is a zero and an odd register is referenced by an instruction whose data type is 64 bits

• The FR bit is a zero and a floating-point instruction is executed whose data type is L or PS

• 64-bit operations are not enabled, the FR bit is a one, and an instruction references the floating-point registe

4.3 Processor Mode Selection

The different processor modes (operating and addressing) are all specified in theStatus Coprocessor 0 register. The
specific fields involved are:

• KSU: The KSU field in theStatusregister (bits [4:3]) specifies the operating mode (00 = Kernel, 01 = Supervisor
= User)

• KX : The KX bit in theStatus register (bit [7]) controls the addressing mode for the kernel operating mode
(0 = 32-bit, 1 = 64-bit)

• SX: The SX bit in theStatus register (bit [6]) controls the addressing mode for the supervisor operating mode
(0 = 32-bit, 1 = 64-bit)

• UX: The UX bit in theStatusregister (bit [5]) controls the addressing mode for the user operating mode (0 = 32
1 = 64-bit)

• ERL : When set to 1, the ERL (error level) bit in theStatus register (bit [2]) indicates that the processor is in error
mode and forces kernel mode operation

• EXL : When set to 1, the EXL (exception level) bit in theStatus register (bit [1]) indicates that the processor is in
exception mode and forces kernel mode operation

Table 4-1 shows how the different instruction sets and addressing modes are enabled by theStatus register bits.

4.4 Addressing Modes

In addition to operating modes, the processor supports two addressing modes: 32-bit mode and 64-bit mode. T
modes determine whether the processor generates 32-bit virtual addresses or 64-bit virtual addresses. Physical a
are not affected by the addressing mode.

Table 4-1 Processor Modes

KX SX UX KSU ERL EXL
Mode

Enabled
Addressing

Mode

- - 0 10 0 0
User Mode

32

- - 1 10 0 0 64

- 0 - 01 0 0 Supervisor
Mode

32

- 1 - 01 0 0 64

0 - - 00 0 0
Kernel Mode

32

1 - - 00 0 0 64

0 - - - 0 1 Exception
Level

(Kernel Mode)

32

1 - - - 0 1 64

0 - - - 1 X Error Level
(Kernel Mode)

32

1 - - - 1 X 64
MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10 35

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

Chapter 4 Memory Management

e thought
th

here is
t address

provide
to

20Kc
In 32-bit mode:

• Addresses are 32 bits wide

• The address space is divided into five regions

• The maximum user process size is 2 Gigabytes (231)

In 64-bit mode:

• Addresses are 64 bits wide

• The address space is divided into eight regions

• The maximum user process size is 1 Terabyte (240)

The 20Kc processor uses only a portion of the 64-bit address. Each address generated by the processor can b
of consisting of two parts: region bits and virtual address.Figure 4-1illustrates the relevant parts of an address for bo
32-bit and 64-bit mode operations.

Figure 4-1 Address Components

4.5 Address Space

An address spaceis the range of all possible addresses that can be generated for a particular addressing mode. T
one 64-bit address space and one 32-bit compatibility address space that is mapped into a subset of the 64-bi
space.

A segment is a defined subset of an address space that has self-consistent reference and access behaviors to
compatibility for 32-bit programs. The 20Kc processor provides a 231-byte compatibility address space separated in
two non-contiguous ranges in which the upper 32 bits of the 64-bit address are the sign extension of bit 31. In the
processor, a 64-bit segment is part of the 64-bit address space and is 240 bytes in size.

The 20Kc processor implements 36 physical address bits. Therefore, the size of the physical address space is 236 bytes.

* Note that in 64-bit mode, bits [61:40] are not arbitrary and need to conform to the formats specified in the
following sections. In most cases, they are just sign extensions of the MSB of the virtual address.

R = region bits

64-bit mode

32-bit mode

R 1 or 0* Virtual Address

R Virtual Address

63 62 61 40 39 0

0282931
36 MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

4.5 Address Space

tion of

ow into
the size
Figure 4-2 shows the layout of the address spaces, including the compatibility address space and the segmenta
each address space.

Figure 4-2 Virtual Address Space

Each segment of an address space is classified asmapped or unmapped. A mapped address is one that is translated
through the TLB. An unmapped address is one that is not translated through the TLB and that provides a wind
the lowest portion of the physical address space, starting at physical address zero, with a size corresponding to
of the unmapped segment.

Kernel
Mapped

User
Mapped

Supervisor
Mapped

Kernel
Unmapped
Uncached

Kernel
Unmapped

Supervisor
Mapped

0x0000 0000 0000 0000

User
Mapped

Kernel
Mapped

0x4000 0000 0000 0000

0x8000 0000 0000 0000

0xFFFF FFFF FFFF FFFF

64-bit Virtual Memory Address Space 32-bit Compatibility Address Space

0xFFFF FFFF FFFF FFFF

0xFFFF FFFF E000 00000

0xFFFF FFFF C000 0000

0xFFFF FFFF A000 0000

0xFFFF FFFF 8000 0000

0x0000 0000 7FFF FFFF

0x0000 0000 0000 0000

Kernel
Unmapped

0xC000 0000 0000 0000

2 31
-byte C

om
patibility S

egm
ent

2
31

-b
yt

e
C

om
pa

tib
ili

ty
 S

eg
m

en
t

xkseg

xkphys

xsseg

xuseg

useg

kseg0

kseg1

sseg

kseg3

0x0000 0000 8000 0000

0xFFFF FFFF 7FFF FFFF
MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10 37

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

Chapter 4 Memory Management

e

rvisor, or
de or a
running
mode

ble when
e Legal

example,
rence to

ate
Additionally, the kseg1 segment is classified asuncached. References to uncached segments bypass all levels of th
cache hierarchy and allow direct access to memory without any interference from the caches.

Each segment of an address space is associated with one of the three processor operating modes: User, Supe
Kernel. A segment that is associated with a particular mode is accessible if the processor is running in that mo
more privileged mode. For example, a segment associated with User Mode is accessible when the processor is
in User, Supervisor, or Kernel Modes. A segment is not accessible if the processor is running in a less privileged
than that associated with the segment. For example, a segment associated with Supervisor Mode is not accessi
the processor is running in User Mode and such a reference results in an Address Error exception. The “Referenc
from Mode(s)” column inTable 4-2 lists the modes from which each segment can be legally referenced.

If a segment has more than one name, each name denotes the mode from which the segment is referenced. For
the segment name “useg” denotes a reference from user mode, while the segment name “kuseg” denotes a refe
the same segment from kernel mode.

As shown in the “Segment Type” column ofTable 4-2, references to 64-bit segments are enabled only if the appropri
64-bit Address Enable is on as indicated by the “64-bit Address Enable” column ofTable 4-2. References to 32-bit
Compatibility segments are always enabled.

Table 4-2 Virtual Memory Address Spaces

VA63..62

Segment
Name(s)

Maximum Address
Range

64-bit
Address
Enable

Associated
with Mode

Reference
Legal
from

Mode(s)

Actual
Segment

Size
Segment

Type

112

kseg3
0xFFFF FFFF FFFF FFFF

through
0xFFFF FFFF E000 0000

Always Kernel Kernel 229 bytes 32-bit
Compatibility

sseg
ksseg

0xFFFF FFFF DFFF FFFF
through

0xFFFF FFFF C000 0000
Always Supervisor Supervisor

Kernel 229 bytes 32-bit
Compatibility

kseg1
0xFFFF FFFF BFFF FFFF

through
0xFFFF FFFF A000 0000

Always Kernel Kernel 229 bytes 32-bit
Compatibility

kseg0
0xFFFF FFFF 9FFF FFFF

through
0xFFFF FFFF 8000 0000

Always Kernel Kernel 229 bytes 32-bit
Compatibility

xkseg
0xFFFF FFFF 7FFF FFFF

through
0xC000 0000 0000 0000

KX Kernel Kernel 240- 231

bytes 64-bit

102 xkphys
0xBFFF FFFF FFFF FFFF

through
0x8000 0000 0000 0000

KX Kernel Kernel

Eight 236

byte regions
within the
262 byte
Segment

64-bit

012
xsseg
xksseg

0x7FFF FFFF FFFF FFFF
through

0x4000 0000 0000 0000
SX Supervisor Supervisor

Kernel 240 bytes 64-bit

002

xuseg
xsuseg
xkuseg

0x3FFF FFFF FFFF FFFF
through

0x0000 0000 8000 0000
UX User

User
Supervisor

Kernel

(240 - 231)

bytes 64-bit

useg
suseg
kuseg

0x0000 0000 7FFF FFFF
through

0x0000 0000 0000 0000
Always User

User
Supervisor

Kernel
231 bytes 32-bit

Compatibility
38 MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

4.5 Address Space

he
r each
4.5.1 Access Control as a Function of Address and Operating Mode

Table 4-3 lists the actions taken by the processor for each section of the 64-bit address space as a function of t
processor operating mode. The selection of TLB Refill vector and other special-cased behavior is also listed fo
reference.

Table 4-3 Address Space Access and TLB Refill Selection as a Function of Operating Mode

Virtual Address Range

Segment
Name(s)

Action when Referenced from Operating
Mode

Symbolic

20Kc
Implementation
SEGBITS = 40,
PABITS = 36 User Mode1

Supervisor
Mode

Kernel
Mode

0xFFFF FFFF FFFF FFFF
through

0xFFFF FFFF E000 0000

0xFFFF FFFF FFFF FFFF
through

0xFFFF FFFF E000 0000
kseg3 Address Error Address Error

Mapped

Refill Vector:
TLB (KX=0)
XTLB(KX=1)

0xFFFF FFFF DFFF FFFF
through

0xFFFF FFFF C000 0000

0xFFFF FFFF DFFF FFFF
through

0xFFFF FFFF C000 0000

sseg

ksseg
Address Error

Mapped

Refill Vector2:
TLB (KX=0)
XTLB(KX=1)

Mapped

Refill Vector2:
TLB (KX=0)
XTLB(KX=1)

0xFFFF FFFF BFFF FFFF
through

0xFFFF FFFF A000 0000

0xFFFF FFFF BFFF FFFF
through

0xFFFF FFFF A000 0000
kseg1 Address Error Address Error Unmapped,

Uncached

0xFFFF FFFF 9FFF FFFF
through

0xFFFF FFFF 8000 0000

0xFFFF FFFF 9FFF FFFF
through

0xFFFF FFFF 8000 0000
kseg0 Address Error Address Error

Unmapped

SeeSection
4.5.2, "Address
Translation and

Cache
Coherency

Attributes for the
kseg0 and kseg1
Segments" on

page 40

0xFFFF FFFF 7FFF FFFF
through

0xC000 0000 0000 0000 + 2SEGBITS- 231

0xFFFF FFFF 7FFF FFFF
through

0xC000 00FF 8000 0000
Address Error Address Error Address Error

0xC000 0000 0000 0000 + 2SEGBITS - 231 - 1
through

0xC000 0000 0000 0000

0xC000 00FF 7FFF FFFF
through

0xC000 0000 0000 0000
xkseg Address Error Address Error

Address Error if
KX = 0

Mapped if
KX = 1

Refill Vector:
XTLB

0xBFFF FFFF FFFF FFFF
through

0x8000 0000 0000 0000

0xBFFF FFFF FFFF FFFF
through

0x8000 0000 0000 0000
xkphys Address Error Address Error

Address Error if
KX = 0 or in

certain address
rangeswithin the

Segment

Unmapped

0x7FFF FFFF FFFF FFFF
through

0x4000 0000 0000 0000 + 2SEGBITS

0x7FFF FFFF FFFF FFFF
through

0x4000 0100 0000 0000
Address Error Address Error Address Error
MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10 39

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

Chapter 4 Memory Management

e kseg0
ays

f-

m

4.5.2 Address Translation and Cache Coherency Attributes for the kseg0 and kseg1 Segments

The kseg0 and kseg1 unmapped segments provide a window into the least significant 229bytes of physical memory, and,
as such, are not translated using the TLB or other address translation unit. The cache coherency attribute of th
segment is supplied by the K0 field of theConfigregister. The cache coherency attribute for the kseg1 segment is alw

0x4000 0000 0000 0000 + 2SEGBITS - 1
through

0x4000 0000 0000 0000

0x4000 00FF FFFF FFFF
through

0x4000 0000 0000 0000

xsseg
xksseg Address Error

Address Error
if SX = 0

Mapped if
SX = 1

Refill Vector:
XTLB

Address Error if
SX = 0

Mapped if
SX = 1

Refill Vector:
XTLB

0x3FFF FFFF FFFF FFFF
through

0x0000 0000 0000 0000 + 2SEGBITS

0x3FFF FFFF FFFF FFFF
through

0x0000 0100 0000 0000
Address Error Address Error Address Error

0x0000 0000 0000 0000 + 2SEGBITS - 1
through

0x0000 0000 8000 0000

0x0000 00FF FFFF FFFF
through

0x0000 0000 8000 0000

xuseg
xsuseg
xkuseg

Address Error if
UX = 0

Mapped if
UX = 1

Refill Vector:
XTLB

Address Error
if UX = 0

Mapped if
UX = 1

Refill Vector:
XTLB

Address Error if
UX = 0

Mapped if
UX = 1

Refill Vector:
XTLB

0x0000 0000 7FFF FFFF
through

0x0000 0000 0000 0000

0x0000 0000 7FFF FFFF
through

0x0000 0000 0000 0000

useg
suseg
kuseg

Mapped

Refill Vector:
TLB (UX=0)
XTLB(UX=1)

Mapped

Refill Vector:
TLB (UX=0)
XTLB(UX=1)

Unmapped if
StatusERL=1

SeeSection
4.5.4, "Address
Translation for

the kuseg
Segment when
StatusERL = 1"

on page 42

Mapped if
StatusERL=0

Refill Vector:
TLB (UX=0)
XTLB(UX=1)

1. SeeSection 4.5.6, "Special Behavior for Data References in User Mode with StatusUX = 0" on page 43for the special treatment of the address for data re
erences when the processor is running in User Mode and the UX bit is zero.

2. Note that the Refill Vector for references to sseg/ksseg is determined by the state of the KX bit, not the SX bit. This simplifies the processor implementation
by allowing them to treat the entire quadrant of the address space in which VA63..62are 112 in the same manner, as well as simplifying operating syste
software design which does not use Supervisor Mode.

Table 4-3 Address Space Access and TLB Refill Selection as a Function of Operating Mode (Continued)

Virtual Address Range

Segment
Name(s)

Action when Referenced from Operating
Mode

Symbolic

20Kc
Implementation
SEGBITS = 40,
PABITS = 36 User Mode1

Supervisor
Mode

Kernel
Mode
40 MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

4.5 Address Space

r each

into the
n unit.

al
en
uncached.Table 4-4describes how this transformation is done and the source of the cache coherency attributes fo
segment.

4.5.3 Address Translation and Cache Coherency Attributes for the xkphys Segment

The xkphys unmapped segment is actually composed of eight address ranges, each of which provides a window
entire 2PABITSbytes of physical memory and, as such, is not translated using the TLB or other address translatio
For this segment, the cache coherency attribute is taken from VA61..59and has the same encoding as that shown inTable
4-5. An Address Error Exception occurs if VA58..PABITSare non-zero. If no Address Error Exception occurs, the physic
address is taken from VAPABITS-1..0. Figure 4-3shows the interpretation of the various fields of the virtual address wh
referencing the xkphys segment.

Figure 4-3 Address Interpretation for the xkphys Segment

Table 4-4 Address Translation and Cache Coherency Attributes for the kseg0 and kseg1 Segments

Segment
Name Virtual Address Range Generates Physical Address Cache Attribute

kseg1
0xFFFF FFFF BFFF FFFF

through
0xFFFF FFFF A000 0000

0x0000 0000 1FFF FFFF
through

0x0000 0000 0000 0000
Uncached

kseg0
0xFFFF FFFF 9FFF FFFF

through
0xFFFF FFFF 8000 0000

0x0000 0000 1FFF FFFF
through

0x0000 0000 0000 0000

From the K0 field of
Config Register

Table 4-5 Address Translation and Cacheability Attributes for the xkphys Segment

Virtual Address Range

Generates Physical Address Cache AttributeSymbolic
20Kc Implementation

PABITS = 36

0xBFFF FFFF FFFF FFFF
through

0xB800 0000 0000 0000 + 2PABITS

0xBFFF FFFF FFFF FFFF
through

0xB800 0010 0000 0000
Address Error N/A

0xB800 0000 0000 0000 + 2PABITS- 1
through

0xB800 0000 0000 0000

0xB800 000F FFFF FFFF
through

0xB800 0000 0000 0000

0x0000 0000 0000 0000 + 2PABITS - 1
through

0x0000 0000 0000 0000

Uses encoding 7 of
Table 4-6 on page 49

0xB7FF FFFF FFFF FFFF
through

0xB000 0000 0000 0000 + 2PABITS

0xB7FF FFFF FFFF FFFF
through

0xB000 0010 0000 0000
Address Error N/A

0xB000 0000 0000 0000 + 2PABITS- 1
through

0xB000 0000 0000 0000

0xB000 000F FFFF FFFF
through

0xB000 0000 0000 0000

0x0000 0000 0000 0000 + 2PABITS - 1
through

0x0000 0000 0000 0000

Uses encoding 6 of
Table 4-6 on page 49

0xAFFF FFFF FFFF FFFF
through

0xA800 0000 0000 0000 + 2PABITS

0xAFFF FFFF FFFF FFFF
through

0xA800 0010 0000 0000
Address Error N/A

0xA800 0000 0000 0000 + 2PABITS- 1
through

0xA800 0000 0000 0000

0xA800 000F FFFF FFFF
through

0xA800 0000 0000 0000

0x0000 0000 0000 0000 + 2PABITS - 1
through

0x0000 0000 0000 0000

Uses encoding 5 of
Table 4-6 on page 49

10 Address Error if Non-ZeroCCA

62

Physical Address

6163 59 58 PABITS 0PABITS - 1
MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10 41

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

Chapter 4 Memory Management

similar to

 Debug
4.5.4 Address Translation for the kuseg Segment when StatusERL = 1

To provide support for the cache error handler, the kuseg segment becomes an unmapped, uncached segment,
the kseg1 segment, if the ERL bit is set in theStatus register. This allows the cache error exception code to operate
uncached using GPRR0 as a base register to save other GPRs before use.

The 20Kc processor transforms the kuseg segment in its entirety. In addition, when the UX bit is a one in theStatus
register, the range of addresses between 232 and 2PABITS– 1 are also treated as an unmapped, uncached segment.
However, accesses to xkuseg addresses between 2PABITS and 2SEGBITS– 1 would result in address error exceptions.

4.5.5 Special Behavior for the kseg3 Segment when DebugDM = 1

The 20Kc processor implements the EJTAG functionality, and consequently treats the virtual address range
0xFFFF FFFF FF20 0000 through 0xFFFF FFFF FF3F FFFF inclusive as a special memory-mapped region in
Mode. Accordingly, the processor:

0xA7FF FFFF FFFF FFFF
through

0xA000 0000 0000 0000 + 2PABITS

0xA7FF FFFF FFFF FFFF
through

0xA000 0010 0000 0000
Address Error N/A

0xA000 0000 0000 0000 + 2PABITS- 1
through

0xA000 0000 0000 0000

0xA000 000F FFFF FFFF
through

0xA000 0000 0000 0000

0x0000 0000 0000 0000 + 2PABITS - 1
through

0x0000 0000 0000 0000

Uses encoding 4 of
Table 4-6 on page 49

0x9FFF FFFF FFFF FFFF
through

0x9800 0000 0000 0000 + 2PABITS

0x9FFF FFFF FFFF FFFF
through

0x9800 0010 0000 0000
Address Error N/A

0x9800 0000 0000 0000 + 2PABITS- 1
through

0x9800 0000 0000 0000

0x9800 000F FFFF FFFF
through

0x9800 0000 0000 0000

0x0000 0000 0000 0000 + 2PABITS - 1
through

0x0000 0000 0000 0000

Cacheable (see
encoding 3 ofTable

4-6 on page 49)

0x97FF FFFF FFFF FFFF
through

0x9000 0000 0000 0000 + 2PABITS

0x97FF FFFF FFFF FFFF
through

0x9000 0010 0000 0000
Address Error N/A

0x9000 0000 0000 0000 + 2PABITS- 1
through

0x9000 0000 0000 0000

0x9000 000F FFFF FFFF
through

0x9000 0000 0000 0000

0x0000 0000 0000 0000 + 2PABITS - 1
through

0x0000 0000 0000 0000

Uncached (see
encoding 2 ofTable

4-6 on page 49)

0x8FFF FFFF FFFF FFFF
through

0x8800 0000 0000 0000 + 2PABITS

0x8FFF FFFF FFFF FFFF
through

0x8800 0010 0000 0000
Address Error N/A

0x8800 0000 0000 0000 + 2PABITS- 1
through

0x8800 0000 0000 0000

0x8800 000F FFFF FFFF
through

0x8800 0000 0000 0000

0x0000 0000 0000 0000 + 2PABITS - 1
through

0x0000 0000 0000 0000

Uses encoding 1 of
Table 4-6 on page 49

0x87FF FFFF FFFF FFFF
through

0x8000 0000 0000 0000 + 2PABITS

0x87FF FFFF FFFF FFFF
through

0x8000 0010 0000 0000
Address Error N/A

0x8000 0000 0000 0000 + 2PABITS- 1
through

0x8000 0000 0000 0000

0x8000 000F FFFF FFFF
through

0x8000 0000 0000 0000

0x0000 0000 0000 0000 + 2PABITS - 1
through

0x0000 0000 0000 0000

Uses encoding 0 of
Table 4-6 on page 49

Table 4-5 Address Translation and Cacheability Attributes for the xkphys Segment (Continued)

Virtual Address Range

Generates Physical Address Cache AttributeSymbolic
20Kc Implementation

PABITS = 36
42 MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

4.6 Address Segments

he
cases in
s not

elow:

r such as
s a 64-bit

 for
UX

:32] of
hecked
for

wn in the
t 31 is a
e off is
duced,
• Explicitly range checks the address range as given and not assume that the entire region between
0xFFFF FFFF FF20 0000 and 0xFFFF FFFF FFFF FFFF is included in the special memory-mapped region.

• Does not enable the special EJTAG mapping for this region in any mode other than in EJTAG Debug Mode.

Even in Debug Mode, normal memory rules might apply in some cases. Refer toChapter 11, “EJTAG Debug Support,”
for details on this mapping.

4.5.6 Special Behavior for Data References in User Mode with StatusUX = 0

When the processor is running in User Mode, legal addresses have VA31 equal zero, and the 32-bit virtual address is
sign-extended (really zero-extended because VA31 is zero) into a full 64-bit address. As such, one would expect that t
normal address bounds checks on the sign-extended 64-bit address would be sufficient. Unfortunately, there are
which a program running on a 32-bit processor can generate a data address that is legal in 32 bits, but which i
appropriately sign-extended into 64 bits. For example, consider the following code example:

la r10, 0x80000000
lw r10, -4(r10)

The results of executing this address calculation on 32-bit and 64-bit processors with UX equal zero is shown b

On a 32-bit processor, the result of this address calculation results in a valid useg address. On a 64-bit processo
the 20Kc, however, the sign-extended address in the base register is added to the sign-extended displacement a
quantity that results in a carry-out of bit 31, producing a data address that is not properly sign extended.

To provide backward compatibility with 32-bit User Mode code, the 20Kc implements the following special case
data references (and explicitlynot for instructions references) when the processor is running in User Mode and the
bit is zero in theStatus register.

The effective address calculated by a load, store, or prefetch instruction is sign extended from bit 31 into bits [63
the full 64-bit address, ignoring the previous contents of bits [63:32] of the address, before the final address is c
for address error exceptions or used to access the TLB or cache. This special-case behavior is not performed
instruction references.

This results in a properly zero-extended address for all legal data addresses (which cleans up the address sho
example above), and results in a properly sign-extended address for all illegal data addresses (those in which bi
one). Code running in Debug Mode, Kernel Mode, or Supervisor Mode with the appropriate 64-bit address enabl
prohibited from generating an effective address in which there is a carry-out of bit 31. If such an address is pro
the operation of the instruction generating such an address isUNPREDICTABLE .

4.6 Address Segments

The following sections discuss the User, Kernel, and Supervisor address segments.

4.6.1 User Mode Segments

User Mode operation is in effect when theStatus register contains the following bit values:

32-bit Processor 64-bit Processor

0x8000 0000 0xFFFF FFFF 8000 0000

0xFFFF FFFC 0xFFFF FFFF FFFF FFFC

0xFFFF FFFF 7FFF FFFC0x7FFF FFFC

++
MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10 43

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

Chapter 4 Memory Management

del

ddress

termine

3:40]
• KSU = 102

• ERL = 0

• EXL = 0

There is a single uniform address space called User segment (usegin 32-bit mode) or Extended User segmentxusegin
64-bit mode). Its size is:

• 2 Gigabytes in 32-bit mode

• 1 Terabyte in 64-bit mode

Figure 4-4 shows the address spaces for User Mode.

Figure 4-4 User Mode Addressing

4.6.1.1 32-bit User Mode (useg)

In User Mode, when UX = 0 in theStatusregister, User Mode addressing is compatible with the 32-bit addressing mo
shown inFigure 4-4, and a 2-Gigabyte user address space is available labelleduseg.

All valid User Mode virtual addresses have their most-significant bit cleared to 0. Any attempt to reference an a
with the most significant bit set while in User Mode causes an Address Error exception.

The system maps all references to useg through the TLB, and bit settings within the TLB entry for the page de
the cacheability attribute of a reference.

4.6.1.2 64-bit User Mode (xuseg)

In User Mode, when UX = 1 in theStatusregister, User Mode addressing is extended to the 64-bit model shown inFigure
4-4. In 64-bit User Mode, the processor provides a single, uniform virtual address space of 240 bytes (1 Terabyte),
labelled xuseg.

All valid User Mode virtual addresses have bits [63:40] equal to 0. An attempt to reference an address with bits [6
not equal to 0 causes an Address Error exception.

4.6.2 Supervisor Mode Segments

Supervisor Mode operation is in effect when theStatus register contains the following bit values:

• KSU = 012

• ERL = 0

• EXL = 0

63

63

62 61 40 39

32 31

0

0

40-bit VA

31-bit VA

0

0 0

0 0 64-bit mode xuseg

32-bit mode useg
44 MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

4.6 Address Segments

ervisor

set to
e.

ss
h a size of

 size of 2
Figure 4-5 shows the address spaces for Supervisor Mode.

Figure 4-5 Supervisor Mode Addressing

All supervisor segments are mapped by the TLB. In addition, for every user segment, there is a corresponding sup
segment which covers it. The different supervisor segments are briefly described below.

4.6.2.1 32-bit Supervisor Mode, User Space (suseg)

In Supervisor Mode, when SX = 0 in the Status register and the most significant bit of the 32-bit virtual address is
0, the suseg virtual address space is selected. It covers the full 231 bytes (2 GBytes) of the current user address spac

4.6.2.2 32-bit Supervisor Mode, Supervisor Space (sseg)

In Supervisor Mode, when SX = 0 in theStatusregister and the three most-significant bits of the 32-bit virtual addre
are 1102, the sseg virtual address space is selected. It is a separate space (does not cover any user space) wit
229 bytes (0.5 GByte).

4.6.2.3 64-bit Supervisor Mode, User Space (xsuseg)

In Supervisor Mode, when SX = 1 in theStatusregister and bits [63:62] of the 64-bit virtual address are set to 002, the
xsuseg virtual address space is selected. It covers the full 240 bytes (1 Terabyte) of the current user address space.

4.6.2.4 64-bit Supervisor Mode, Extended Supervisor Space (xsseg)

In Supervisor Mode, when SX = 1 in theStatusregister and bits [63:62] of the 64-bit virtual address are set to 012, the
xsseg virtual address space is selected. It is a separate address space (does not cover any user space) with a40

bytes (1 Terabyte).

31-bit VA

0

00

64-bit mode csseg

63 62 61 3132 029 28

63 62 61 40 39 0

63 3132 029 28

63 62 61 40 39 0

63 3132 030

00

1 11

0

29-bit VA

40-bit VA

40-bit VA

29-bit VA1 11011

01 64-bit mode xsseg

64-bit mode xsuseg

32-bit mode sseg

32-bit mode suseg
MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10 45

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

Chapter 4 Memory Management

 that

xception
prior to

are five
ress is
ot cover
gments

below.
4.6.2.5 64-bit Supervisor Mode, Compatible Supervisor Space (csseg)

In Supervisor Mode, when SX = 1 in theStatusregister and bits [63:62] of the 64-bit virtual address are set to 112, the
csseg virtual address space is selected. It is a compatible space to the sseg 32-bit mode segment. This means
addressing of the csseg is compatible with the addressing of sseg, as shown inFigure 4-5.

4.6.3 Kernel Mode Segments

Kernel Mode operation is in effect when theStatus register contains any one of the following bit values:

• KSU = 002

• ERL = 1

• EXL = 1

The processor enters kernel mode whenever an exception or error is detected, and remains in that mode until an e
return instruction is executed (ERET). The ERET instruction restores the processor state to the one that existed
the exception.

Kernel Mode operation allows access to all the defined regions in the memory map. As mentioned earlier, there
regions defined for 32-bit mode, and those span the complete 32-bit address space. Therefore, any 32-bit add
always valid in kernel mode. However, in 64-bit addressing mode, there are eight regions defined, and those do n
the entire 64-bit address space. Therefore, even in kernel mode, an address that falls outside of the defined se
causes an Address Error exception.

Figure 4-6 shows the address spaces for Kernel Mode in 32-bit addressing.

Figure 4-6 Kernel Mode Addressing (32-bit)

Not all kernel segments are mapped by the TLB. In addition, every user or supervisor segment is covered by a
corresponding kernel segment. The different kernel segments in 32-bit addressing mode are briefly described

0

29-bit VA111 32-bit mode kseg3

32-bit mode ksseg

32-bit mode kseg1

32-bit mode kseg0

32-bit mode kuseg

63 3132 029 28

63 3132 029 28

63 3132 029 28

63 3132 029 28

63 3132 0

110

101

100

0

1

1

1

1

29-bit VA

29-bit VA

29-bit VA

31-bit VA
46 MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

4.6 Address Segments

0,

are
ize of 2

cting
y

are
e of 2

cting

are

are
ize of 2

for user
4.6.3.1 32-bit Kernel Mode, User Space (kuseg)

In Kernel Mode, when KX = 0 in theStatusregister and the most significant bit of the 32-bit virtual address is set to
the kuseg virtual address space is selected. It covers the full 231 bytes (2 GBytes) of the current user address space.

4.6.3.2 32-bit Kernel Mode, Kernel Space 0 (kseg0)

In Kernel Mode, when KX = 0 in theStatusregister and the three most-significant bits of the 32-bit virtual address
1002, the kseg0 virtual address space is selected. It is a separate space (does not cover any user space) with a s29

bytes (0.5 GByte). References tokseg0are not mapped through the TLB; the physical address is selected by subtra
0x8000_0000 from the virtual address. The K0 field of theConfig Coprocessor 0 register determines the cacheabilit
attributes of this segment.

4.6.3.3 32-bit Kernel Mode, Kernel Space 1 (kseg1)

In Kernel Mode, when KX = 0 in theStatusregister and the three most-significant bits of the 32-bit virtual address
1012, thekseg1virtual address space is selected. It is a separate space (does not cover any user space) with a siz29

bytes (0.5 GByte). References tokseg1are not mapped through the TLB; the physical address is selected by subtra
0xA000_0000 from the virtual address. All accesses to thekseg1 space are uncached.

4.6.3.4 32-bit Kernel Mode, Supervisor Space (ksseg)

In Kernel Mode, when KX = 0 in theStatusregister and the three most-significant bits of the 32-bit virtual address
1102, the ksseg virtual address space is selected. It has a size of 229 bytes (0.5 GByte) and fully covers the supervisor
segment sseg. References to ksseg are mapped through the TLB.

4.6.3.5 32-bit Kernel Mode, Kernel Space 3 (kseg3)

In Kernel Mode, when KX=0 in theStatus register and the three most-significant bits of the 32-bit virtual address
1112, the kseg3 virtual address space is selected. It is a separate space (does not cover any user space) with a s29

bytes (1/2 GByte). References to kseg3 are mapped through the TLB.

In 64-bit addressing mode, there are eight total kernel regions. However, most of those just cover existing spaces
and supervisor modes.Figure 4-7 illustrates the different kernel regions in 64-bit mode, each of which is briefly
described below.
MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10 47

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

Chapter 4 Memory Management

.

s

.

Figure 4-7 Kernel Mode Addressing (64-bit)

4.6.3.6 64-bit Kernel Mode, User Space (xkuseg)

In Kernel Mode, when KX = 1 in theStatus register and bits [63:62] of the 64-bit virtual address are set to 002, the
xkuseg virtual address space is selected. It covers the full 240 bytes (1 Terabyte) of the extended user address space

Note that when ERL = 1 in theStatusregister, the user address region becomes a 231-byte unmapped uncached addres
segment.

4.6.3.7 64-bit Kernel Mode, Supervisor Space (xksseg)

In Kernel Mode, when KX = 1 in theStatusregister and bits [63:62] of the 64-bit virtual address are set to 012, the xksseg
virtual address space is selected. It covers the full 240 bytes (1 Terabyte) of the extended supervisor address space

64-bit mode ckseg3

63 61 60 3132 029 28

29-bit VA1 111111

64-bit mode cksseg

63 61 60 3132 029 28

29-bit VA1 110111

64-bit mode ckseg1

63 61 60 3132 029 28

29-bit VA1 101111

64-bit mode ckseg0

63 61 60 3132 029 28

29-bit VA1 100111

64-bit mode xkphys

63 62 61 3132 0

32-bit PA010

64-bit mode xksseg40-bit VA001

64-bit mode xkuseg40-bit VA000

59 58

C

63 62 61 3940 0

63 62 61 3940 0

63 62 61 3940 03132 29 28

11111......................11111011

000

11111111011

11 0 00000000 00000......................00000

63 62 61 3940 03132 29 28

64-bit mode xkseg
48 MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

4.6 Address Segments

cal spaces

 virtual
[58:32]

ce

ble

areas are
s in the
4.6.3.8 64-bit Kernel Mode, Physical Spaces (xkphys)

In Kernel Mode, when KX = 1 in theStatusregister and bits [63:62] of the 64-bit virtual address is set to 102, the xkphys
address space is selected. The xkphys space is actually a set of eight kernel physical spaces. Each of these physi
is 4 GBytes in size.

References to this space are not mapped. Instead, the physical address is taken directly from bits [31:0] of the
address. Cacheability attributes are also contained in bits [61:59] of the virtual address. Access with address bits
not equal to zero cause an Address Error Exception.Table 4-6 lists the xkphys spaces.

4.6.3.9 64-bit Kernel Mode, Extended Kernel Segment (xkseg)

In Kernel Mode, when KX=1 in theStatus register and bits [63:62] of the 64-bit virtual address are set to 112, and bits
[31:29] of the virtual address equal one of {0002, 0012, 0102, 0112}, the xkseg pace is selected. All accesses to this spa
are mapped through the TLB.

4.6.3.10 64-bit Kernel Mode, Compatibility Spaces (ckseg0, ckseg1, cksseg, ckseg3)

In Kernel Mode, when KX = 1 in theStatusregister and bits [63:61] of the 64-bit virtual address are set to 1112, and bits
[31:29] of the virtual address equal one of {1002, 1012, 1102, 1112}, one of the 512-MByte compatibility spaces is
selected.

• ckseg0: This space is selected when bits [31:29] = 1002. This space is an unmapped region, compatible with the
32-bit address model kseg0. The K0 field of theConfig register controls cacheability and coherence.

• ckseg1: This space is selected when bits [31:29] = 1012. This space is an unmapped, uncached region. It is
compatible with the address model kseg1.

• cksseg: This space is selected when bits [31:29] = 1102. This space is the current supervisor space, and is compati
with the address model ksseg.

• ckseg3: This space is selected when bits [31:29] = 1112. This space is a kernel virtual space, compatible with the
address model kseg3. All accesses to this space are mapped through the TLB.

4.6.4 Debug Mode

Debug Mode address space is identical to kernel mode address space with respect to unmapped areas. Mapped
only accessible if a valid translation is resident in the TLB. In parallel with this, a debug segment dseg co-exist
virtual address range 0xFF20_0000 to 0xFF3F_FFFF. The layout is shown inFigure 4-8.

Table 4-6 xkphys Spaces

VA[61:59] Cache Algorithm Starting Address

0 Cacheable, Non-Coherent, Write
Through, No Write Allocate 0x8000 0000 0000 0000

1 Reserved 0x8800 0000 0000 0000

2 Uncached 0x9000 0000 0000 0000

3 Cacheable, Non-Coherent 0x9800 0000 0000 0000

4 Cacheable, Coherent, Exclusive 0xA000 0000 0000 0000

5 Reserved 0xA800 0000 0000 0000

6 Reserved 0xB000 0000 0000 0000

7 Uncached Accelerated 0xB800 0000 0000 0000
MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10 49

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

Chapter 4 Memory Management

r debug
at such

ich allows

sed to

 data in
user

s, 4

e. The
ress bits
physical

ess is
ontext
Figure 4-8 Debug Mode Virtual Address Space

Accesses to memory that would normally cause an exception if tried from kernel mode cause the core to re-ente
mode via a debug mode exception. This includes accesses usually causing a TLB exception, with the result th
accesses are not handled by the usual memory management routines.

The unmapped kseg0 and kseg1 segments from kernel mode address space are available from debug mode, wh
the debug handler to be executed from uncached and unmapped memory.

4.7 Virtual Address Translation

Programs can use either physical or virtual memory addresses:

• Physical addresses are used directly to access specific locations in memory and are by nature fixed.

• Virtual addresses are logical values only, and must be translated to physical addresses before they can be u
access memory.

Translation is essential for multitasking systems, because it allows the operating system to load programs and
memory independently of the virtual address used. Translation is also used for memory protection, preventing
programs from interfering with each other.

4.7.1 Page Size Support

The 20Kc processor supports the following page sizes: 4 KBytes, 16 KBytes, 64 KBytes, 256 KBytes, 1 MByte
MBytes, and 16 MBytes. The virtual address bits that select a page are called thepage address and are translated. The
lower bits that select a byte within the page are called theoffset and are not translated.

For a 4-KByte page, theoffset consists of bits [11:0]. For the largest page size (16 MBytes), theoffset increases to bits
[23:0]. Accordingly, the page address consists of bits [63:12] for the smallest page, and [63:24] for the largest on
upper two virtual address bits [63:62] select between user, supervisor, and kernel spaces. The intermediate add
[61:40] must either be all zeros or all ones, depending on the address region. The only exception is the kernel
space xkphys, which uses bits [61:59] for the cache attribute of the page.

Figure 4-9shows the logical translation of a virtual address into a physical address. In this figure, the virtual addr
extended with an 8-bit address-space identifier (ASID), which reduces the frequency of TLB flushing during a c
switch. This 8-bit ASID contains the number assigned to that process and is stored in the CP0EntryHi register.

0xFFFF_FFFF

dseg
0xFF40_0000

0xFF20_0000

0x0000_0000

kseg1

kseg0 Unmapped

Unmapped if unmapped in kernel mode,
otherwise conditionally mapped and only
accessible if valid translation is resident in TLB.

0x8000_0000

0xA000_0000

0xC000_0000
50 MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

4.7 Virtual Address Translation

ith the

fferent
eparate
slation
he TLB.

s (TLB).

n be
ent has
ysical
(V), and

e TLB
s are

entry.
Figure 4-9 Overview of a Virtual-to-Physical Address Translation

If there is a virtual address match in the TLB, the physical address is output from the TLB and concatenated w
Offset, which represents an address within the page frame space. Theoffset does not pass through the TLB.

4.7.2 Address Space Identifiers and Global Processes

The 20Kc MMU supports Address Space Identifiers (ASID). These are used to separate address spaces for di
processes that are running on the machine. The 20Kc processor supports an 8-bit wide ASID, allowing for 256 s
processes to coexist without interference. In addition, there might be situations where it is desired to have a tran
shared among all the processes. In this case, the translation can be marked Global by setting a specific bit in t

4.7.3 Address Translation Mechanism

Mapped virtual addresses are translated into physical addresses using the on-chip Translation Lookaside Buffer

The TLB is a fully associated memory which contains virtual-to-physical translations. Each TLB entry in part ca
thought of consisting of two components: a compare part, and a physical translation part. The compare compon
a Global bit, an ASID, and finally a Virtual Page Number (VPN) field. The physical translation component has a ph
mapping (Page Frame Number, PFN) and other attributes such as cache and coherency attributes (C), a valid bit
a dirty bit (D).

When a translation is requested, the virtual page number and the current ASID are presented to the TLB. All th
entries are checked simultaneously for a match. A correct match (TLB hit) occurs when the following condition
satisfied:

• The current ASID matches the ASID within the TLB entry, or the TLB entry is marked global.

• The relevant bits of the virtual address match the corresponding ones in the virtual page number in the TLB
The bits compared depend on the addressing mode as well as the page size of the TLB entry.

1. Virtual address (VA) represented by
the virtual page number (VPN) is
compared with tag in TLB.

2. If there is a match, the page frame
number (PFN) representing the
upper bits of the physical address
(PA) is output from the TLB.

3. The Offset, which does not pass
through the TLB, is then
concatenated with the PFN.

G

G

ASID VPN Offset

Virtual Address

Physical Address

VPN

PFN

PFN Offset

TLB
Entry

ASID

TLB
MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10 51

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

Chapter 4 Memory Management

fset to
se

uncached

ce,
of a

ritable

ith the

de.

sent

f the

-TLB
When a TLB entry matches, the physical page number is extracted from the TLB and concatenated with the of
generate the physical address as shown inFigure 4-9. In addition, the access control bits (C, D, V) are retrieved. Tho
are used by the processor in the following ways:

• The cache and coherency attributes indicate cacheability attributes of the access, such as cached, uncached,
accelerated, and write-through.

• The valid bit (V) indicates if the translation is valid. The valid bit must be set for a valid translation to take pla
however, it is not involved in the determination of a matching TLB entry. It is a means for the software to get rid
translation.

• The dirty bit (D) is used when the translation is for a store request. If the dirty bit is not set, the page is not w
and an exception is triggered.

If no match occurs, an exception is taken and software refills the TLB from the page table in memory.

If there is a virtual address match in the TLB, the physical address is output from the TLB and concatenated w
Offset, which represents an address within the page frame space. Theoffset does not pass through the TLB.

The 20Kc core contains a 64-bit virtual address with 40-bit virtual segments. Physical addresses are 36 bits wi
However, its segments are 240 Bytes in size. The top portion ofFigure 4-10shows a virtual address for a 4-Kbyte page
size. The width of theOffsetin Figure 4-10is defined by the page size. The remaining upper bits of the address repre
the virtual page number (VPN).

The bottom portion ofFigure 4-10shows the virtual address for a 16-Mbyte page size. The remaining upper bits o
address represent the VPN.

Figure 4-10 20Kc Virtual Address Translation Example

4.8 Translation Lookaside Buffers

The 20Kc processor consists of two address translation buffers: a Micro-TLB and a Joint-TLB.

The Micro-TLB provides translations for load/store instructions and operates as a fully associative cache. Each
load/store instruction accesses the Micro-TLB first. If a translation is not found in the Micro-TLB, then the Joint

11 0

 28 12

63

VPN Offset

07

 8

Virtual Address with 256M (228) 4-Kbyte pages

23 0

 24
24

Offset

Virtual Address with 64K (216)16-Mbyte pages

12

VPN

24

Virtual-to-physical
translation in TLB

Bit [63:62] of the virtual address
selects user and kernel address
spaces.

Offset passed unchanged
to physical memory

Virtual-to-physical
translation in TLB

 TLB

 TLB

 35 0
PFN Offset

Offset passed unchanged
to physical memory

36-bit Physical Address

6261 40 39

 24

636261 4039

 16

ASID

07

8

ASID
52 MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

4.8 Translation Lookaside Buffers

ins a

tware.
ardware
o-TLB
ation

e
ical

rison
nd the
e entry,
ysical

s in the
ir of

d to the
true:

 the
 an
B to
is accessed. Once the translation is retrieved, it is written back to the Micro-TLB. Therefore, the Micro-TLB conta
subset of translations that are most frequently used.

The Micro-TLB has eight entries to store the different translations. Unlike the Joint-TLB, it is transparent to sof
There is no means for the operating system to access the Micro-TLB and modify its contents. Therefore, the h
ensures that the Micro-TLB is a proper subset of the Joint-TLB, and guarantees that every translation in the Micr
also exists in the Joint-TLB. Each Micro-TLB entry has a page size of 4KBytes. Micro-TLB also provides transl
for unmapped virtual address.

The Joint-TLB is the main translation structure in the MMU, even though it is accessed less frequently then the
Micro-TLB. It provides translations for instruction cache requests, and for load/store instructions that miss in th
Micro-TLB. The Joint-TLB contains 48 dual-entries, each of which provides two physical translations. The phys
translation is selected based on the least significant bit of the page address.

4.8.1 20Kc TLB Organization

The 20Kc Micro-TLB and Joint-TLB address translation buffers each contain two logical components: a compa
section and a physical translation section. The comparison section includes the mapping region specifier (R) a
virtual page number (actually, the virtual page number/2 since each entry maps two physical pages, VPN2) of th
the ASID, the G(lobal) bit. The physical translation section contains a pair of entries, each of which contains the ph
page frame number (PFN), a valid (V) bit, a dirty (D) bit, and a cache coherency field (C). There are two entrie
translation section of each TLB entry because each TLB entry maps an aligned pair of virtual pages and the pa
physical translation entries corresponds to the even and odd pages of the pair.Figure 4-11shows the logical arrangement
of a TLB entry.

Figure 4-11 Contents of a TLB Entry

The fields of the TLB entry correspond exactly to the fields in the CP0PageMask, EntryHi, EntryLo0, andEntryLo1
registers. The even page entries in the TLB (for example, PFN0) come fromEntryLo0. Similarly, odd page entries come
from EntryLo1.

When an address translation is requested, the virtual page number and the current process ASID are presente
TLB. All entries are checked simultaneously for a match, which occurs when all of the following conditions are

• The current process ASID (as obtained from theEntryHi register) matches the ASID field in the TLB entry, or the G
bit is set in the TLB entry.

• Bits [63:62] of the virtual address match the region code in the R field of the TLB entry.

• The appropriate bits of the virtual page number match the corresponding bits of the VPN2 field stored within
TLB entry. The “appropriate” number of bits is determined by the PageMask field in each entry by performing
ANDNOT operation on both the virtual page number and the TLB VPN2 field. This allows each entry of the TL
support a different page size, as determined by thePageMask register at the time that the TLB entry was written.

PageMask

VPN2 ASIDG

C0 D0V0

C1 D1 V1

PFN0

PFN1

R

MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10 53

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

Chapter 4 Memory Management

m the

and a
ised.
pended

write.
al
If a TLB entry matches the address and ASID presented, the corresponding PFN, C, V, and D bits are read fro
translation section of the TLB entry. Which of the two PFN entries is read is a function of the virtual address bit
immediately to the right of the section masked with the PageMask entry.

The valid and dirty bits determine the final success of the translation. If the valid bit is off, the entry is not valid
TLB Invalid exception is raised. If the dirty bit is off and the reference was a store, a TLB Modified exception is ra
If there is an address match with a valid entry and no dirty exception, the PFN and the cache attribute bits are ap
to the offset-within-page bits of the address to form the final physical address with attributes.

The TLB lookup process in the 20Kc can be described as follows:
found ← 0
for i in 0...TLBEntries-1

if (TLB[i]R = va 63..62) and
 ((TLB[i] VPN2 and not (TLB[i] Mask)) = (va SEGBITS-1..13 and not

(TLB[i] Mask))) and
 (TLB[i] G or (TLB[i] ASID = EntryHi ASID)) then

EvenOddBit selects between even and odd halves of the TLB as a
function of

the page size in the matching TLB entry
case TLB[i] Mask

000000000000 2: EvenOddBit ← 12
000000000011 2: EvenOddBit ← 14
000000001111 2: EvenOddBit ← 16
000000111111 2: EvenOddBit ← 18
000011111111 2: EvenOddBit ← 20
001111111111 2: EvenOddBit ← 22
111111111111 2: EvenOddBit ← 24
otherwise: UNDEFINED

endcase
if va EvenOddBit = 0 then

pfn ← TLB[i] PFN0
v ← TLB[i] V0
c ← TLB[i] C0
d ← TLB[i] D0

else
pfn ← TLB[i] PFN1
v ← TLB[i] V1
c ← TLB[i] C1
d ← TLB[i] D1

endif
if v = 0 then

InitiateTLBInvalidException(reftype)
endif
if (d = 0) and (reftype = store) then

InitiateTLBModifiedException()
endif
pfn PABITS-1-12..0 corresponds to pa PABITS-1..12
pa ← pfn PABITS-1-12..EvenOddBit-12 || va EvenOddBit-1..0
found ← 1
break

endif
endfor
if found = 0 then

InitiateTLBMissException(reftype, VA64Enable)
endif

In the 20Kc processor, the VPN2, PFN0, and PFN1 fields of the TLB are pre-masked by the Mask value on a TLB
This provides the flexibility of eliminating the “and not TLB[i]Mask” terms in the pseudocode above. Note that the virtu
address must still be masked with the TLB[i]Mask value in either case.
54 MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

4.8 Translation Lookaside Buffers

atches

ddress.

e 8-bit

istence
in the
Table 4-7demonstrates how the physical address is generated as a function of the page size of the TLB entry that m
the virtual address. The “Even/Odd Select” column ofTable 4-7 indicates which virtual address bit is used to select
between the even (EntryLo0) or odd (EntryLo1) entry in the matching TLB entry. The “PA generated from” column
specifies how the physical address is generated from the selected PFN and the offset-in-page bits in the virtual a
In this column, PFN is the physical page number as loaded into the TLB from theEntryLo0or EntryLo1registers, and
has the bit range PFN23..0, corresponding to PA35..12.

4.8.2 TLB Tag and Data Formats

Figure 4-12 shows the format of a TLBtag entry. The entry is divided into the following fields:

• Global process indicator (G bit)

• Address space identifier

• Virtual page number

• Compressed page mask

Setting the G bit indicates that the entry is global to all processes and/or threads in the system. In this case, th
ASID value is ignored since the entry is not relative to a specific thread or process.

The address space identifier (ASID) helps to reduce the frequency of TLB flushing on a context switch. The ex
of the ASID allows multiple processes to exist in both the TLB and instruction caches. The ASID value is stored
EntryHi register and is compared to the ASID value of each entry.Figure 4-12 andTable 4-8 show the TLB tag entry
format.Figure 4-13 andTable 4-9 show the TLB data array entry format.

Figure 4-12 TLB Tag Entry Format

Table 4-7 Physical Address Generation

Page Size Even/Odd Select PA generated from

4 KBytes VA12 PFN23..0 || VA11..0

16 KBytes VA14 PFN23..2 || VA13..0

64 KBytes VA16 PFN23..4 ||VA15..0

256 KBytes VA18 PFN23..6 || VA17..0

1 MBytes VA20 PFN23..8 || VA19..0

4 MBytes VA22 PFN23..10 || VA21..0

16 MBytes VA24 PFN23..12 || VA23..0

Table 4-8 TLB Tag Entry Fields

Field Name Description

G Global Bit. When set, indicates that this entry is global to all processes and/or
threads and thus disables inclusion of the ASID in the comparison.

ASID[7:0] Address Space Identifier. Identifies with process or thread this TLB entry is
associated with.

ASID[7:0] VPN2[39:25] VPN2[24:13] CMASK[5:0]

1 8 15 1 6

G

MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10 55

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

Chapter 4 Memory Management
Figure 4-13 TLB Data Array Entry Format

VPN2[39:25],
VPN2[24:13]

Virtual Page Number divided by 2. This field contains the upper bits of the
virtual page number. Because it represents a pair of TLB pages, it is divided by
2. Bits [31:25] are always included in the TLB lookup comparison. Bits [24:13]
are included depending on the page size.

CMASK[5:0]

Compressed Page Mask Value. This field is a compressed version of the page
mask. It defines the page size by masking the appropriate VPN2 bits from being
involved in a comparison. It is also used to determine which address bit is used
to make the even-odd page determination.

Table 4-9 TLB Data Array Entry Fields

Field Name Description

PFN[35:12]
Physical Frame Number. Defines the upper bits of the physical address.
For page sizes larger than 4 Kbytes, only a subset of these bits is actually
used.

C[2:0]

Cacheability. Contains an encoded value of the cacheability attributes and
determines whether the page should be placed in the cache or not. The field
is encoded as follows:

D
“Dirty” or Write Enable Bit. Indicates that the page has been written
and/or is writable. If this bit is set, stores to the page are permitted. If the
bit is cleared, stores to the page cause a TLB Modified exception.

V
Valid Bit. Indicates that the TLB entry and, thus, the virtual page mapping
are valid. If this bit is set, accesses to the page are permitted. If the bit is
cleared, accesses to the page cause a TLB Invalid exception.

Table 4-8 TLB Tag Entry Fields (Continued)

Field Name Description

124

D VPFN[35:12] C[2:0]

13

C[2:0] Coherency Attribute

000
Cacheable, noncoherent, write
through, no write allocate

001 Reserved

010 Uncached

011 Cacheable, noncoherent

100 Cacheable, coherent, exclusive

101 Reserved

110 Reserved

111 Uncached accelerated
56 MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

4.9 TLB Instructions

dress
B. The

tion

in
try. In
ritten

 occur.
0Kc
.

with

between
4.9 TLB Instructions

Table 4-10 lists the 20Kc processor TLB-related instructions. Refer toChapter 13, “Instruction Set Architecture,” for
more information on these instructions.

4.9.1 Hits, Misses, and Multiple Matches

Each Joint-TLB entry contains a tag portion and a data portion. If a match is found, the upper bits of the virtual ad
are replaced with the page frame number (PFN) stored in the corresponding entry in the data array of the Joint-TL
granularity of Joint-TLB mappings is defined in terms of TLBpages. The Joint-TLB supports pages of different sizes
ranging from 4 KBytes to 16 MBytes in powers of 4. If a match is found but the entry is invalid, a TLB Invalid excep
is taken.

If no match occurs (TLB miss), an exception is taken and software refills the TLB from the page table resident
memory. Software can write over a selected TLB entry or use a hardware mechanism to write into a random en
addition, there is a hidden bit in each TLB entry that is cleared on a Reset. This bit is set once the TLB entry is w
and is included in the match detection.

The 20Kc processor implements a TLB write-compare mechanism to ensure that multiple TLB matches do not
On the TLB write operation, the write value is compared with all other entries in the TLB. If a match occurs, the 2
processor takes a machine-check exception, sets the TS bit in the CP0Statusregister, and completes the write operation
The other matching entries are invalidated by clearing the hidden bit described in the previous paragraph.

Note: To be consistent with other MIPS Technologies devices, it is recommended that all TLB entries be initialized
unique tag values and V bits cleared before the first access to a memory mapped location.

Table 4-11shows the address bits used for even/odd bank selection depending on page size and the relationship
the legal values in the mask register and the selected page size.

Table 4-10 TLB Instructions

Opcode Description of Instruction

TLBP Translation Lookaside Buffer Probe

TLBR Translation Lookaside Buffer Read

TLBWI Translation Lookaside Buffer Write Index

TLBWR Translation Lookaside Buffer Write Random

Table 4-11 Mask and Page Size Values

PageMask[11:0] Page Size Even/Odd Bank Select Bit

0000_0000_0000 4KB VAddr[12]

0000_0000_0011 16KB VAddr[14]

0000_0000_1111 64KB VAddr[16]

0000_0011_1111 256KB VAddr[18]

0000_1111_1111 1MB VAddr[20]

0011_1111_1111 4MB VAddr[22]

1111_1111_1111 16MB VAddr[24]
MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10 57

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

Chapter 4 Memory Management

regions,
p a page
,
urpose

written
lso
4.9.2 Page Sizes and Replacement Algorithm

To assist in controlling both the amount of mapped space and the replacement characteristics of various memory
the 20Kc processor provides two mechanisms. First, the page size can be configured on a per entry basis to ma
size of 4 KBytes to 16 MBytes (in multiples of 4). The CP0PageMask register is loaded with the mapping page size
which is then entered into the TLB when a new entry is written. Thus, operating systems can provide special-p
maps. For example, a typical frame buffer can be memory mapped with only one TLB entry.

The second mechanism controls the replacement algorithm when a TLB miss occurs. To select a TLB entry to be
with a new mapping, the 20Kc processor provides a random replacement algorithm. However, the processor a
provides a mechanism whereby a programmable number of mappings can be locked into the TLB via theWiredregister,
thus avoiding random replacement.
58 MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

isses,
 normal

counter,
an be

branch

elled.
re

 all
 CP0
address,

ctions
t
an itself
Chapter 5

Exceptions and Interrupts

The 20Kc processor receives exceptions from a number of sources, including translation lookaside buffer (TLB) m
arithmetic overflows, I/O interrupts, and system calls. When the processor detects one of these exceptions, the
sequence of instruction execution is suspended and the processor enters kernel mode.

In kernel mode the core disables interrupts and forces execution of a software exception processor (called ahandler)
located at a fixed address. The handler saves the context of the processor, including the contents of the program
the current operating mode, and the status of the interrupts (enabled or disabled). This context is saved so it c
restored when the exception has been serviced.

When an exception occurs, the core loads theException Program Counter (EPC) register with a location where
execution can restart after the exception has been serviced. The restart location in theEPCregister is the address of the
instruction that caused the exception or, if the instruction was executing in a branch delay slot, the address of the
instruction immediately preceding the delay slot.

This chapter contains the following sections:

• Section 5.1, "Exception Conditions"

• Section 5.2, "Exception Types"

• Section 5.3, "Exception Priority"

• Section 5.4, "Exception Vector Locations"

• Section 5.5, "General Exception Processing"

• Section 5.6, "Debug Exception Processing"

• Section 5.7, "Exceptions"

• Section 5.8, "Exception Handling and Servicing Flowcharts"

• Section 5.9, "Interrupts"

5.1 Exception Conditions

When an exception condition occurs, the relevant instruction and all those that follow it in the pipeline are canc
Accordingly, any stall conditions and any later exception conditions that may have referenced this instruction a
inhibited; there is no benefit in servicing stalls for a cancelled instruction.

When an exception condition is detected on an instruction fetch, the 20Kc processor aborts that instruction and
instructions that follow. When this instruction reaches the W stage, the exception flag causes it to write various
registers with the exception state, change the current program counter (PC) to the appropriate exception vector
and clear the exception bits of earlier pipeline stages.

This implementation allows all preceding instructions to complete execution and prevents all subsequent instru
from completing. Thus, the value in theEPC(ErrorEPCfor errors, orDEPCfor debug exceptions) is sufficient to restar
execution. It also ensures that exceptions are taken in the order of execution; an instruction taking an exception c
be killed by an instruction further down the pipeline that takes an exception in a later cycle.
MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10 59

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

Chapter 5 Exceptions and Interrupts
5.2 Exception Types

The 20Kc processor defines the following exception types listed inTable 5-1. These exceptions types are used inTable
5-2.

5.3 Exception Priority

Table 5-2 lists all possible exceptions, and the relative priority of each, highest to lowest.

Table 5-1 Exception Type Characteristics

Exception Type Characteristics

Asynchronous Reset
Denotes a reset-type exception that occurs asynchronously to instruction execution. These
exceptions always have the highest priority to guarantee that the processor can always be
placed in a runnable state.

Asynchronous Debug

Denotes an EJTAG debug exception that occurs asynchronously to instruction execution.
These exceptions have very high priority with respect to other exceptions because of the desire
to enter Debug Mode, even in the presence of other exceptions, both asynchronous and
synchronous.

Asynchronous

Denotes any other type of exception that occurs asynchronously to instruction execution.
These exceptions are shown with higher priority than synchronous exceptions mainly for
notational convenience. If one thinks of asynchronous exceptions as occurring between
instructions, they are either the lowest priority relative to the previous instruction, or the
highest priority relative to the next instruction. The ordering of the table above considers them
in the second way.

Synchronous Debug

Denotes an EJTAG debug exception that occurs as a result of instruction execution, and is
reported precisely with respect to the instruction that caused the exception. These exceptions
are prioritized above other synchronous exceptions to allow entry to Debug Mode, even in the
presence of other exceptions.

Synchronous

Denotes any other exception that occurs as a result of instruction execution, and is reported
precisely with respect to the instruction that caused the exception. These exceptions tend to be
prioritized below other types of exceptions, but there is a relative priority of synchronous
exceptions with each other.

Table 5-2 Priority of Exceptions

Exception Description Type

Reset TheSI_ColdReset signal was asserted to the processor. Asynchronous
ResetSoft Reset TheSI_Reset signal was asserted to the processor.

Debug Single Step (DSS)

An EJTAG Single Step occurred. Prioritized above other
exceptions, including asynchronous exceptions, so that one
can single-step into interrupt (or other asynchronous)
handlers.

Synchronous
Debug

Debug Interrupt (DINT) An EJTAG interrupt (EjtagBrk or DINT) was asserted. Asynchronous
DebugImprecise Debug Data Break An imprecise EJTAG data break condition was asserted.

Nonmaskable Interrupt (NMI) TheSI_NMI signal was asserted to the processor. Asynchronous

Machine Check An internal inconsistency was detected by the processor. Synchronous
60 MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

5.3 Exception Priority
Bus Error - Instruction fetch A bus error occurred on an instruction fetch.

Asynchronous

Cache Error - Data access A cache error occurred on a load or store data reference.

Bus Error - Data access A bus error occurred on a load or store data reference.

Interrupt An enabled interrupt occurred.

Deferred Watch
A watch exception, deferred because EXL or ERL was one
when the exception was detected, was asserted after both
EXL and ERL went to zero.

Debug Instruction Break
An EJTAG instruction break condition was asserted. This
exception is prioritized above instruction fetch exceptions to
allow break on illegal instruction addresses.

Synchronous
Debug

Watch - Instruction fetch
A watch address match was detected on an instruction fetch.
This exception is prioritized above instruction fetch
exceptions to allow watch on illegal instruction addresses.

Synchronous

Address Error - Instruction fetch A non-word-aligned address was loaded into PC.

TLB/XTLB Refill - Instruction fetch A TLB miss occurred on an instruction fetch.

TLB Invalid - Instruction fetch The valid bit was zero in the TLB entry mapping the address
referenced by an instruction fetch.

Cache Error - Instruction fetch A cache error occurred on an instruction fetch.

SDBBP An EJTAG SDBBP instruction was executed. Synchronous
Debug

Instruction Validity Exceptions

An instruction could not be completed because it was not
allowed access to the required resources, or was illegal:
Coprocessor unusable, reserved instruction. If both
exceptions occur on the same instruction, the Coprocessor
Unusable Exception takes priority. Synchronous

Execution Exception An instruction-based exception occurred: Integer overflow,
trap, system call, breakpoint, floating-point exception.

Precise Debug Data Break

A precise EJTAG data break on load/store (address match
only) condition was asserted. This exception is prioritized
above data fetch exceptions to allow break on illegal data
addresses.

Synchronous
Debug

Watch - Data access

A watch address match was detected on the address
referenced by a load or store. This exception is prioritized
above data fetch exceptions to allow watch on illegal data
addresses.

Synchronous

Address error - Data access
An unaligned address, or an address that was inaccessible in
the current processor mode, was referenced by a load or store
instruction.

TLB/XTLB Refill - Data access A TLB miss occurred on a data access.

TLB Invalid - Data access The valid bit was zero in the TLB entry mapping the address
referenced by a load or store instruction.

TLB Modified - Data access The dirty bit was zero in the TLB entry mapping the address
referenced by a store instruction.

Table 5-2 Priority of Exceptions

Exception Description Type
MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10 61

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

Chapter 5 Exceptions and Interrupts

g
robEn

tion of
ther
the
s a
5.4 Exception Vector Locations

The Reset, Soft Reset, and NMI exceptions are always vectored to location 0xFFFF_FFFF_BFC0_0000. Debu
exceptions are vectored to location 0xFFFF_FFFF_BFC0_0480 or to location 0xFFFF_FFFF_FF20_0200 if the P
bit is 0 or 1, respectively, in the EJTAG Control register (ECR). Addresses for all other exceptions are a combina
a vector offset and a base address.Table 5-3 on page 62gives the base address as a function of the exception and whe
the BEV bit is set in theStatusregister.Table 5-4 on page 62gives the offsets from the base address as a function of
exception.Table 5-5 on page 62 combines these two tables into one that contains all possible vector addresses a
function of the state that can affect the vector selection.

Table 5-3 Exception Vector Base Addresses

Exception

StatusBEV

0 1

Reset, Soft Reset, NMI 0xFFFF_FFFF_BFC0_0000

Debug (with ProbTrap = 0 in the EJTAG Control register) 0xFFFF_FFFF_BFC0_0480

Debug (with ProbTrap = 1 in the EJTAG Control register) 0xFFFF_FFFF_FF20_0200

Cache Error 0xFFFF_FFFF_A000_0000 0xFFFF_FFFF_BFC0_0200

Other 0xFFFF_FFFF_8000_0000 0xFFFF_FFFF_BFC0_0200

Table 5-4 Exception Vector Offsets

Exception Vector Offset

TLB Refill, EXL = 0 0x000

64-bit XTLB Refill, EXL = 0 0x080

Cache error 0x100

General Exception 0x180

Interrupt, CauseIV = 1 0x200

Reset, Soft Reset, NMI None (Uses Reset Base Address)

Table 5-5 Exception Vectors

Exception BEV EXL IV
EJTAG

ProbTrap Vector

Reset, Soft Reset, NMI x x x x 0xFFFF FFFF BFC0 0000

EJTAG Debug x x x 0 0xFFFF FFFF BFC0 0480

EJTAG Debug x x x 1 0xFFFF FFFF FF20 0200

TLB Refill 0 0 x x 0xFFFF FFFF 8000 0000

XTLB Refill 0 0 x x 0xFFFF FFFF 8000 0080

TLB Refill 0 1 x x 0xFFFF FFFF 8000 0180

XTLB Refill 0 1 x x 0xFFFF FFFF 8000 0180

TLB Refill 1 0 x x 0xFFFF FFFF BFC0 0200
62 MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

5.5 General Exception Processing

nd NMI

f a
e

CE

handler
tify the

iption
5.5 General Exception Processing

All non-debug related exceptions have the same basic processing flow with the exception of Reset, Soft Reset, a
exceptions, which have their own special processing as described below:

• If the EXL bit in theStatus register is zero, theEPC register is loaded with the PC at which execution will be
restarted and the BD bit is set appropriately in theCause register. The value loaded into theEPC register is the
current PC if the instruction is not in the delay slot of a branch, or PC-4 if the instruction is in the delay slot o
branch. If the EXL bit in theStatusregister is set, theEPCregister is not loaded and the BD bit is not changed in th
Cause register.

• The CE and ExcCode fields of theCause registers are loaded with the values appropriate to the exception. The
field is loaded, but not defined, for any exception type other than a coprocessor unusable exception.

• The EXL bit is set in theStatus register.

• The processor is started at the exception vector.

The value loaded into EPC represents the restart address for the exception and need not be modified by exception
software in the normal case. Software need not look at the BD bit in the Cause register unless it wishes to iden
address of the instruction that actually caused the exception.

Note that individual exception types can load additional information into other registers. This is noted in the descr
of each exception type below.

Operation:

if Status EXL = 0
if InstructionInBranchDelaySlot then
EPC <- PC - 4
CauseBD <- 1
else
EPC <- PC

XTLB Refill 1 0 x x 0xFFFF FFFF BFC0 0280

TLB Refill 1 1 x x 0xFFFF FFFF BFC0 0380

XTLB Refill 1 1 x x 0xFFFF FFFF BFC0 0380

Cache Error 0 x x x 0xFFFF FFFF A000 0100

Cache Error 1 x x x 0xFFFF FFFF BFC0 0300

Interrupt 0 0 0 x 0xFFFF FFFF 8000 0180

Interrupt 0 0 1 x 0xFFFF FFFF 8000 0200

Interrupt 1 0 0 x 0xFFFF FFFF BFC0 0380

Interrupt 1 0 1 x 0xFFFF FFFF BFC0 0400

All others 0 x x x 0xFFFF FFFF 8000 0180

All others 1 x x x 0xFFFF FFFF BFC0 0380

‘x’ denotes don’t care

Table 5-5 Exception Vectors (Continued)

Exception BEV EXL IV
EJTAG

ProbTrap Vector
MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10 63

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

Chapter 5 Exceptions and Interrupts

e.
ines,
m
 following

uction
CauseBD <- 0
endif
if ExceptionType = TLBRefill then

vectorOffset <- 0x000
elseif (ExceptionType = XTLBRefill) then

vectorOffset <- 0x080
elseif (ExceptionType = Interrupt) and

 (Cause IV = 1) then
vectorOffset <- 0x200

else
vectorOffset <- 0x180

endif
else

vectorOffset <- 0x180
endif
CauseCE <- FaultingCoprocessorNumber
CauseExcCode <- ExceptionType
Status EXL <- 1
if Status BEV = 1 then

PC <- 0xFFFF FFFF BFC0 0200 + vectorOffset
else

PC <- 0xFFFF FFFF 8000 0000 + vectorOffset
endif

5.6 Debug Exception Processing

All debug exceptions have the same basic processing flow which is described in detail inChapter 11, “EJTAG Debug
Support.”

5.7 Exceptions

The following subsections describe each of the exceptions listed in the same sequence as shown inTable 5-2.

5.7.1 Reset Exception

A reset exception occurs when theSI_ColdReset signal is asserted to the processor. This exception is not maskabl
When a Reset exception occurs, the processor performs a full reset initialization, including aborting state mach
establishing critical state, and generally placing the processor in a state in which it can execute instructions fro
uncached, unmapped address space. On a Reset exception, the state of the processor is not defined, with the
exceptions:

• TheRandom register is initialized to the number of TLB entries - 1.

• TheWired register is initialized to zero.

• TheConfig register is initialized with its boot state.

• The BEV, TS, SR, NMI, ERL, and RP fields of theStatus register are initialized to a specified state.

• Watch register enables and Performance Counter register interrupt enables are cleared.

• TheErrorEPC register is loaded with PC-4 if the state of the processor indicates that it was executing an instr
in the delay slot of a branch. Otherwise, theErrorEPC register is loaded with PC. Note that this value may or may
not be predictable.

• PC is loaded with 0xFFFF_FFFF_BFC0_0000.
64 MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

5.7 Exceptions

le. When
et
 the
 cache, or
ent. In

uction
Cause Register ExcCode Value:

None

Additional State Saved:

None

Entry Vector Used:

Reset (0xFFFF_FFFF_BFC0_0000)

Operation:

Random <- TLBEntries - 1
Wired <- 0
Config <- ConfigurationState
Config K0 <- 2 # Suggested - see Config register description
Config1 <- ConfigurationState
Status BEV <- 1
Status TS <- 0
Status SR <- 0
Status NMI <- 0
Status ERL <- 1
Status RP <- 0
WatchLo[n] I <- 0 # For all implemented Watch registers
WatchLo[n] R <- 0 # For all implemented Watch registers
WatchLo[n] W <- 0 # For all implemented Watch registers
PerfCnt.Control[n] IE <- 0 # For all implemented PerfCnt registers

if InstructionInBranchDelaySlot then
ErrorEPC <- PC - 4

else
ErrorEPC <- PC

endif
PC <- 0xFFFF_FFFF_BFC0_0000

5.7.2 Soft Reset Exception

A soft reset exception occurs when the Reset signal is asserted to the processor. This exception is not maskab
a soft reset exception occurs, the processor performs a subset of the full reset initialization. Although a soft res
exception does not unnecessarily change the state of the processor, it may be forced to do so in order to place
processor in a state in which it can execute instructions from uncached, unmapped address space. Since bus,
other operations may be interrupted, portions of the cache, memory, or other processor state may be inconsist
addition to any hardware initialization required, the following state is established on a soft reset exception:

• The BEV, TS, SR, NMI, ERL, and RP fields of theStatus register are initialized to a specified state.

• Watch register enables and Performance Counter register interrupt enables are cleared.

• TheErrorEPC register is loaded with PC-4 if the state of the processor indicates that it was executing an instr
in the delay slot of a branch. Otherwise, theErrorEPC register is loaded with PC. Note that this value may or may
not be predictable.

• The PC is loaded with 0xFFFF_FFFF_BFC0_0000.

Cause Register ExcCode Value:

None

Additional State Saved:

None
MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10 65

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

Chapter 5 Exceptions and Interrupts

occurs
ache,
s:

ction

t

Entry Vector Used:

Reset (0xBFC0_0000)

Operation:

Config K0 <- 2 # Suggested - see Config register description
Status BEV <- 1
Status TS <- 0
Status SR <- 1
Status NMI <- 0
Status ERL <- 1
Status RP <- 0
WatchLo[n] I <- 0 # For all implemented Watch registers
WatchLo[n] R <- 0 # For all implemented Watch registers
WatchLo[n] W <- 0 # For all implemented Watch registers
PerfCnt.Control[n] IE <- 0 # For all implemented PerfCnt registers
if InstructionInBranchDelaySlot then

ErrorEPC <- PC - 4
else

ErrorEPC <- PC
endif
PC <- 0xFFFF FFFF BFC0 0000

5.7.3 Debug Single Step Exception

A detailed description of this exception can be found inChapter 11, “EJTAG Debug Support.”

5.7.4 Debug Interrupt Exception

A detailed description of this exception can be foundChapter 11, “EJTAG Debug Support.”

5.7.5 Debug Instruction Break Exception

A detailed description of this exception can be found inChapter 11, “EJTAG Debug Support.”

5.7.6 Non-Maskable Interrupt (NMI) Exception

A non-maskable interrupt exception occurs when the NMI signal is asserted to the processor. An NMI exception
only at instruction boundaries, so it does not cause any reset or other hardware initialization. The state of the c
memory, and other processor states are consistent and all registers are preserved, with the following exception

• The BEV, TS, SR, NMI, and ERL fields of theStatus register are initialized to a specified state.

• TheErrorEPC register is loaded with PC – 4 if the state of the processor indicates that it was executing an instru
in the delay slot of a branch. Otherwise, theErrorEPC register is loaded with PC.

• The PC is loaded with 0xFFFF_FFFF_BFC0_0000.

NMI exceptions are disabled under the following conditions:

• The processor is operating in Debug Mode

• The NMI Enable (NMIE) bit in the Debug Control Register (DCR) is cleared

For further details on the interaction of NMI with Debug Mode refer toSection 11.5.2.2, "Overview of Data Breakpoin
Registers" on page 201.
66 MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

5.7 Exceptions

causes

 new
LB
ever,

es and

 an
on fetch
uring bus
Cause Register ExcCode Value:

None

Additional State Saved:

None

Entry Vector Used:

Reset (0xFFFF_FFFF_BFC0_0000)

Operation:

SRBEV <- 1
SRTS <- 0
SRSR <- 0
SRNMI <- 1
SRERL <- 1
if InstructionInBranchDelaySlot then

ErrorEPC <- PC - 4
else

ErrorEPC <- PC
endif
PC <- 0xFFFF_FFFF_BFC0_0000

5.7.7 Machine Check Exception

A machine check exception occurs when the processor detects an internal inconsistency. The following condition
a machine check exception:

• A machine check exception can only be signalled as a result of a TLB write operation. This occurs when the
entry to be written into the TLB creates the possibility of multiple matching entries on future references. All T
entries that overlapped with the new one are effectively deleted from the TLB. Their contents remain intact how
and software may read all the entries of the TLB to determine the cause. Note that the TLB operation complet
the new entry is written into the TLB. The TS bit in the Status register is also set to indicate this condition.

Cause Register ExcCode Value:

MCheck

Additional State Saved:

None.

Entry Vector Used:

General exception vector (offset 0x180)

5.7.8 Bus Error Exception — Instruction Fetch or Data Access

A bus error exception occurs when an instruction or data access makes a bus request (due to a cache miss or
uncacheable reference) and that request terminates in an error. Bus error exceptions that occur on an instructi
have a higher priority than bus error exceptions that occur on a data access. Note that parity errors detected d
transactions are reported as cache error exceptions, and not as bus error exceptions.

Bus errors for both instruction fetch and data accesses are imprecise. In case of a bus error, theEPC register does not
contain the PC of the instruction that actually caused the exception.
MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10 67

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

Chapter 5 Exceptions and Interrupts

or ECC
HE
cessors
this are:

 cache

cached
cache is
ed has a
Cause Register ExcCode Value:

IBE: Error on an instruction reference
DBE: Error on a data reference

Additional State Saved:

None

Entry Vector Used:

General exception vector (offset 0x180)

5.7.9 Cache Error Exception

A cache error exception occurs when an instruction or data reference detects a cache tag or data error, or a parity
error is detected on the system bus when a cache miss occurs. The Index Load Tag and Index Store Tag CAC
instructions do not trigger cache error exceptions, however, the software must not rely on this behavior. Future pro
may have different behaviors regarding whether these instructions incur cache error exceptions. The reasons for

• The Index Store Tag CACHE instruction is the way to initialize the instruction cache in the first place.

• The Index Load Tag CACHE instruction is a diagnostic instruction that may be used to probe the cache on a
error exception.

This exception is not maskable. Because the error was in a cache, the exception vector is to an unmapped, un
address. It is implementation dependent whether a cache error exception resulting from an access to the data
reported precisely with respect to the instruction that caused the cache error. When a data cache line being evict
bad tag parity, the processor takes a cache error exception and also sends the data to the external bus.

Cache errors for a data access to a non-blocking cache are imprecise and theErrorEPC register does not contain the PC
of the instruction that actually caused the exception.

Cause Register ExcCode Value

N/A

Additional State Saved

Entry Vector Used

Cache error vector (offset 0x100)

Operation

CacheErr <- ErrorState
Status ERL <- 1

if InstructionInBranchDelaySlot then
ErrorEPC <- PC - 4

else
ErrorEPC <- PC

endif
if Status BEV = 1 then

PC <- 0xFFFF FFFF BFC0 0200 + 0x100

Table 5-6 CP0 Register States on a Cache Error Exception

Register State Value

CacheErr Error state

ErrorEPC PC
68 MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

5.7 Exceptions

e

 data

ch
he

ile in

hich is
en. It

hen the

 an

matches
else
PC <- 0xFFFF FFFF A000 0000 + 0x100

endif

5.7.10 Interrupt Exception

The interrupt exception occurs when one or more of the eight interrupt requests is enabled by theStatusregister and the
interrupt input is asserted.

Register ExcCode Value:

Int

Additional State Saved:

Entry Vector Used:

General exception vector (offset 0x180) if the IV bit in theCause register is 0;
interrupt vector (offset 0x200) if the IV bit in theCause register is 1.

5.7.11 Debug Software Breakpoint Exception

A detailed description of this exception can be found inSection 11.5.4, "Debug Exceptions from Breakpoints" on pag
204.

5.7.12 Watch Exception — Instruction Fetch or Data Access

The Watch facility provides a software debugging vehicle by initiating a watch exception when an instruction or
reference matches the address information stored in theWatchHi andWatchLo registers. A Watch exception is taken
immediately if the EXL and ERL bits of theStatus register are both zero. If either bit is a one at the time that a wat
exception would normally be taken, the WP bit in theCause register is set, and the exception is deferred until both t
EXL and ERL bits in the Status register are zero. Software can use the WP bit in theCauseregister to determine if the
EPC register points at the instruction that caused the watch exception, or if the exception actually occurred wh
kernel mode.

If the EXL or ERL bits are one in the Status register and a single instruction generates both a watch exception (w
deferred by the state of the EXL and ERL bits) and a lower-priority exception, the lower priority exception is tak
is implementation dependent whether the WP bit is set in this case. The 20Kc processor sets the WP bit only w
instruction completes with no other exception.

The Watch exception can occur on either an instruction fetch or a data access. Watch exceptions that occur on
instruction fetch have a higher priority than watch exceptions that occur on a data access.

The 20Kc processor does not trigger data watch exceptions on a prefetch or cache instruction whose address
the Watch register.

Register ExcCode Value:

WATCH

Table 5-7 Register States an Interrupt Exception

Register State Value

CauseIP indicates the interrupts that are pending.
MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10 69

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

Chapter 5 Exceptions and Interrupts

f the

dary.

 when

nabled.

ndition
cess
sor mode
Additional State Saved:

Entry Vector Used:

General exception vector (offset 0x180)

5.7.13 Address Error Exception — Instruction Fetch/Data Access

An address error exception occurs on an instruction or data access when an attempt is made to execute one o
following:

• A load or store doubleword instruction is executed in which the address is not aligned on a doubleword boun

• An instruction is fetched from an address that is not aligned on a word boundary.

• A load or store word instruction is executed in which the address is not aligned on a word boundary.

• A load or store halfword instruction is executed in which the address is not aligned on a halfword boundary.

• A reference is made to a kernel address space from User Mode or Supervisor Mode.

• A reference is made to a supervisor address space from User Mode.

• A reference is made to a a 64-bit address that is outside the range of the 32-bit Compatibility Address Space
64-bit address references are not enabled.

• A reference is made to an undefined or unimplemented 64-bit address when 64-bit address references are e

Note that in the case of an instruction fetch that is not aligned on a word boundary, the PC is updated before the co
is detected. Therefore, bothEPC andBadVAddr point to the unaligned instruction address. In the case of a data ac
the exception is taken if either an unaligned address or an address that was inaccessible in the current proces
was referenced by a load or store instruction.

Cause Register ExcCode Value:

ADEL: Reference was a load or an instruction fetch
ADES: Reference was a store

Table 5-8 Register States on a Watch Exception

Register State Value

CauseWP

Indicates that the watch exception was deferred until after
both StatusEXL and StatusERL were zero. This bit directly
causes a watch exception, so software must clear this bit
as part of the exception handler to prevent a watch
exception loop at the end of the current handler
execution.
70 MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

5.7 Exceptions

a
n
tinct
B

Additional State Saved:

Entry Vector Used:

General exception vector (offset 0x180)

5.7.14 TLB Refill and XTLB Refill Exceptions

A TLB Refill or XTLB Refill exception occurs in a TLB-based MMU when no TLB entry matches a reference to
mapped address space and the EXL bit is zero in theStatusregister. Note that this is distinct from the case in which a
entry matches but has the valid bit off, in which case a TLB Invalid exception occurs. Refill exceptions have dis
exception vector offsets: 0x000 for a 32-bit TLB Refill and 0x080 for a 64-bit extended TLB (“XTLB”) refill. The XTL
refill handler is used whenever a reference is made to an enabled 64-bit address space.

Cause Register ExcCode Value

TLBL: Reference was a load or an instruction fetch
TLBS: Reference was a store

Additional State Saved

Entry Vector Used

• TLB Refill vector (offset 0x000) if 64-bit addresses are not enabled and StatusEXL = 0 at the time of exception.

• XTLB Refill vector (offset 0x080) if 64-bit addresses are enabled and StatusEXL = 0 at the time of exception.

• General exception vector (offset 0x180) in either case if StatusEXL = 1 at the time of exception.

Table 5-9 CP0 Register States on an Address Exception Error

Register State Value

BadVAddr Failing address

ContextVPN2 UNPREDICTABLE

EntryHiVPN2 UNPREDICTABLE

EntryLo0 UNPREDICTABLE

EntryLo1 UNPREDICTABLE

Table 5-10 CP0 Register States on a TLB/XTLB Refill Exception

Register State Value

BadVAddr Failing address

Context The BadVPN2 field contains VA31:13 of the failing
address

XContext
TheXContext BadVPN2 field contains VASEGBITS-1:13,
and theXContext R field contains VA63:62 of the failing
address

EntryHi

TheEntryHi VPN2 field contains VASEGBITS-1:13of the
failing address and the EntryHi R field contains VA63:62
of the failing address; the ASID field contains the ASID
of the reference that missed

EntryLo0 UNPREDICTABLE

EntryLo1 UNPREDICTABLE
MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10 71

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

Chapter 5 Exceptions and Interrupts

bit off.

system

. A
5.7.15 TLB Invalid Exception — Instruction Fetch or Data Access

During an instruction fetch or data access, a TLB invalid exception occurs in one of the following cases:

• No TLB entry in the MMU matches a reference to a mapped address space, and the EXL bit is 1 in theStatusregister.

• A TLB entry in the MMU matches a reference to a mapped address space, but the matched entry has the valid

Cause Register ExcCode Value:

TLBL: Reference was a load or an instruction fetch
TLBS: Reference was a store

Additional State Saved:

Entry Vector Used:

General exception vector (offset 0x180)

5.7.16 Execution Exception — System Call

The system call exception is one of the six execution exceptions. All of these exceptions have the same priority. A
call exception occurs when a SYSCALL instruction is executed.

Cause Register ExcCode Value:

Sys

Additional State Saved:

None

Entry Vector Used:

General exception vector (offset 0x180)

5.7.17 Execution Exception — Breakpoint

The breakpoint exception is one of the six execution exceptions. All of these exceptions have the same priority
breakpoint exception occurs when a BREAK instruction is executed.

Table 5-11 CP0 Register States on a TLB Invalid Exception

Register State Value

BadVAddr Failing address

Context The BadVPN2 field contains VA31:13 of the failing address

XContext
TheXContext BadVPN2 field contains VASEGBITS-1:13 of
the failing address, and theXContext R field contains
VA63:62of the failing address

EntryHi

The VPN2 field contains VASEGBITS-1:13 of the failing
address, and theXContext R field contains VA63:62of the
failing address. The ASID field contains the ASID of the
reference that missed.

EntryLo0 UNPREDICTABLE

EntryLo1 UNPREDICTABLE
72 MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

5.7 Exceptions

E).

 not

”
rocessor

to
ccurs

ed. If
entations
n the

ess to
f
he

nusable
ception,
Cause Register ExcCode Value:

Bp

Additional State Saved:

None

Entry Vector Used:

General exception vector (offset 0x180)

5.7.18 Execution Exception — Reserved Instruction

A Reserved Instruction Exception occurs if any of the following conditions is true:

• An instruction was executed that specifies an encoding of the opcode field (Table 13-19) that is flagged with “∗”
(reserved), “β” (higher-order ISA), “⊥” (64-bit) if 64-bit operations are not enabled, or an unimplemented “e” (AS

• An instruction was executed that specifies aSPECIAL opcode encoding of the function field (Table 13-20) that is
flagged with “∗” (reserved), “β” (higher-order ISA), or “⊥” (64-bit) if 64-bit operations are not enabled.

• An instruction was executed that specifies aREGIMM opcode encoding of the rt field (Table 13-21) that is flagged
with “∗” (reserved).

• An instruction was executed that specifies an unimplementedSPECIAL2 opcode encoding of the function field
(Table 13-22) that is flagged with an unimplemented “q” (partner available), “^” (64-bit) if 64-bit operations are
enabled, or an unimplemented “s” (EJTAG).

• An instruction was executed that specifies aCOPz opcode encoding of the rs field (Table 13-23) that is flagged with
“*” (reserved), “b” (higher-order ISA), “^” (64-bit) if 64-bit operations are not enabled, or an unimplemented “e
(ASE), assuming that access to the coprocessor is allowed. If access to the coprocessor is not allowed, a Cop
Unusable Exception occurs instead. For theCOP1 opcode, some implementations of previous ISAs reported this
case as a Floating-Point Exception, setting the Unimplemented Operation bit in the Cause field of theFCSR register.

• An instruction was executed that specifies an unimplementedCOP0opcode encoding of the function field when rs is
CO (Table 13-26) that is flagged with “*” (reserved), or an unimplemented “s” (EJTAG), assuming that access
Coprocessor 0 is allowed. If access to the coprocessor is not allowed, a Coprocessor Unusable Exception o
instead.

• An instruction was executed that specifies aCOP1opcode encoding of the function field when rs is S, D, or W (Table
13-27, Table 13-28, Table 13-29) that is flagged with “*” (reserved), “b” (higher-order ISA), “^” (64-bit) if 64-bit
operations are not enabled, or an unimplemented “e” (ASE), assuming that access to Coprocessor 1 is allow
access to the coprocessor is not allowed, a Coprocessor Unusable Exception occurs instead. Some implem
of previous ISAs reported this case as a Floating-Point Exception, setting the Unimplemented Operation bit i
Cause field of theFCSR register.

• An instruction was executed that specifies aCOP1 opcode encoding when rs is L or PS (Table 13-30, Table 13-31)
and 64-bit operations are not enabled, or with a function field encoding that is flagged with “*” (reserved), “b”
(higher-order ISA), or an unimplemented “e” (ASE), assuming that access to coprocessor 1 is allowed. If acc
the coprocessor is not allowed, a Coprocessor Unusable Exception occurs instead. Some implementations o
previous ISAs reported this case as a Floating-Point Exception, setting the Unimplemented Operation bit in t
Cause field of theFCSR register.

• An instruction was executed that specifies a COP1X opcode encoding of the function field (Table 13-32) that is
flagged with “*” (reserved), or any execution of the COP1X opcode when 64-bit operations are not enabled,
assuming that access to coprocessor 1 is allowed. If access to the coprocessor is not allowed, a Coprocessor U
Exception occurs instead. Some implementations of previous ISAs reported this case as a Floating-Point Ex
setting the Unimplemented Operation bit in the Cause field of theFCSR register.
MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10 73

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

Chapter 5 Exceptions and Interrupts

not

de or

n

ity. An
• A branch occurs in a branch delay slot in certain circumstances. Note that a branch in a branch delay slot is
allowed in the MIPS architecture, and the behavior is defined as “unpredictable” for that case.

Cause Register ExcCode Value

RI

Additional State Saved

None

Entry Vector Used

General exception vector (offset 0x180)

5.7.19 Execution Exception — Coprocessor Unusable

A coprocessor unusable exception occurs if any of the following conditions are true:

• A COP0 or Cache instruction was executed while the processor was running in a mode other than Debug Mo
Kernel Mode, and the CU0 bit in theStatus register was a zero.

• A COP1, COP1X, LWC1, SWC1, LDC1, SDC1, or MOVCI (Special opcode function field encoding) instructio
was executed and the CU1 bit in theStatus register was a zero.

• A COP2, LWC2, SWC2, LDC2, or SDC2 instruction was executed, and the CU2 bit in theStatusregister was a zero.

Cause Register ExcCode Value:

CpU

Additional State Saved:

Entry Vector Used:

General exception vector (offset 0x180)

5.7.20 Execution Exception — Integer Overflow

The integer overflow exception is one of the six execution exceptions. All of these exceptions have the same prior
integer overflow exception occurs when selected integer instructions result in a 2’s complement overflow.

Cause Register ExcCode Value:

Ov

Additional State Saved:

None

Entry Vector Used:

General exception vector (offset 0x180)

Table 5-12 Register States on a Coprocessor Unusable Exception

Register State Value

CauseCE Unit number of the coprocessor being referenced
74 MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

5.7 Exceptions

eption

.

5.7.21 Execution Exception — Trap

The trap exception is one of the six execution exceptions. All of these exceptions have the same priority. A trap exc
occurs when a trap instruction results in a TRUE value.

Cause Register ExcCode Value:

Tr

Additional State Saved:

None

Entry Vector Used:

General exception vector (offset 0x180)

5.7.22 Precise Debug Data Break Exception

A detailed description of this exception can be found inSection 11.3.5.6, "Debug Data Break Load/Store Precise
Exception on Address".

5.7.23 Imprecise Debug Data Break Exception

A detailed description of this exception can be found inSection 11.3.5.7, "Debug Data Break Load/Store Imprecise
Exception on Data".

5.7.24 TLB Modified Exception — Data Access

During a data access, a TLB modified exception occurs on astore reference to a mapped address if the following
condition is true:

• The matching TLB entry in a TLB-based MMU is valid, but not dirty (indicating that the page is not writeable)

Cause Register ExcCode Value:

Mod
MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10 75

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

Chapter 5 Exceptions and Interrupts

:

e (SW).
ewed as

to
Additional State Saved:

Entry Vector Used:

General exception vector (offset 0x180)

5.8 Exception Handling and Servicing Flowcharts

The remainder of this chapter contains flowcharts for the following exceptions and guidelines for their handlers

• General exceptions and their exception handler

• TLB miss exception and their exception handler

• Reset, soft reset and NMI exceptions, and a guideline to their handler.

• Debug exceptions

Generally speaking, the exceptions are handled by hardware (HW); the exceptions are then serviced by softwar
Note that unexpected debug exceptions to the debug exception vector at 0xFFFF_FFFF_BFC0_0200 may be vi
a reserved instruction since uncontrolled execution of a SDBBP instruction caused the exception. The DERET
instruction must be used at return from the debug exception handler, in order to leave debug mode and return
non-debug mode. The DERET instruction returns to the address in the DEPC register.

Table 5-13 Register States on a TLB Modified Exception

Register State Value

BadVAddr Failing address

Context The BadVPN2 field contains VA31:13 of the failing address.

XContext TheXContext BadVPN2 field contains VASEGBITS-1:13 of the failing
address, and theXContextR field contains VA63:62of the failing address.

EntryHi
The VPN2 field contains VASEGBITS-1:13 of the failing address, and the
XContextR field contains VA63:62of the failing address. The ASID field
contains the ASID of the reference that missed.

EntryLo0 UNPREDICTABLE

EntryLo1 UNPREDICTABLE
76 MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

5.8 Exception Handling and Servicing Flowcharts
Figure 5-1 General Exception Handler (HW)

EnHi and Context are set only for
*TLB- Invalid, Modified, and Refill
exceptions. BadVA is set only for
TLB- Invalid, Modified, Refill- and
VCED/I exceptions.
Note: not set if it is a Bus Error.

Exceptions other than Reset, Soft Reset, NMI, or first-level miss.
Note: Interrupts can be masked by IE or IMs and Watch is masked if EXL =1

EnHi <- VPN2, ASID
Context <- VPN2
Set Cause Register
EXCCode, CE
Set BadVA

Check if exception within
another exception

EXL
(SR1)

=1

=1 (bootstrap)

NoYes

=0 (normal)

Instr. in
Br.Dly. Slot?

Cause 31 (BD) <- 1
EPC <- (PC - 4)

EXL <- 1

BEV

PC <- 0xFFFF_FFFF_8000_0000 + 180
(unmapped, cached)

To General Exception Servicing Guidelines

PC <- 0xFFFF_FFFF_BFC0_0200 + 180
(unmapped, uncached)

Processor forced to Kernel Mode
and interrupt disabled

Cause 31 (BD) <- 0
EPC <- PC

Comments

=0
MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10 77

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

Chapter 5 Exceptions and Interrupts
Figure 5-2 General Exception Servicing Guidelines (SW)

* Unmapped vector so TLBMod, TLBInv, TLB
Refill exceptions not possible.
* EXL=1 so Watch, Interrupt exceptions disabled
* OS/System to avoid all other exceptions
* Only CacheError, Reset, Soft Reset, NMI
exceptions possible.

Comments
MFC0 -
Context
EPC
Status
Cause

MTC0 -
(Set Status Bits:)
UM <- 0
EXL <- 0
& IE=1

* After EXL=0, all exceptions allowed.
(except interrupt if masked by IE or IM
and CacheError if masked by DE)

(Optional - only to enable Interrupts while keeping Kernel Mode)

Check Cause value and Jump to
appropriate Service Code

Reset the processor

Status
bit 21(TS)

Service Code

EXL = 1

MTC0 -
EPC
STATUS

ERET

* ERET is not allowed in the branch delay slot
of a Jump or Branch Instruction.
* Since the ERET does not have a branch
delay slot, the processor does not execute the
instruction that immediately follows the ERET.
* PC <- EPC; EXL <- 0
* LLbit <- 0

=1

=0
78 MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

5.8 Exception Handling and Servicing Flowcharts
Figure 5-3 TLB Miss Exception Handler (HW)

Instr. in
Br.Dly. Slot?

EnHi <- VPN2, ASID
Context <- VPN2
Set Cause Reg.
EXCCode, CE and
Set BadVA

EnHi <- VPN2, ASID
Context <- VPN2
Set Cause Reg.
EXCCode, CE and
Set BadVA

Yes

EXL
(SR bit 1)

No

=1=1

=0 =0

EXL
(SR bit 1)

Check if exception
within another exception

EPC <- (PC - 4)
Cause bit 31 (BD) <- 1

EPC <- PC
Cause bit 31 (BD) <- 1

Vec. Off. = 0x000 Vec. Off. = 0x180

EXL <- 1

Points to General Exception

Processor forced to Kernel
Mode and interrupt disabled

=0 (normal) =1 (bootstrap)BEV
(SR bit 22)

PC <- 0xFFFF_FFFF_8000_0000 + Vec.Off.
(unmapped, cached)

PC <- 0xFFFF_FFFF_BFC0_0200 + Vec.Off.
(unmapped, uncached)

To TLB Exception Servicing Guidelines
MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10 79

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

Chapter 5 Exceptions and Interrupts
Figure 5-4 TLB Exception Servicing Guidelines (SW)

Comments

* Unmapped vector so TLBMod, TLBInv, TLB
Refill or VCEP exceptions not possible.
*EXL=1 so Watch, Interrupt exceptions disabled.
*OS/System to avoid all other exceptions.
*Only Reset, Soft Reset, NMI exceptions possible.

Service Code

MFC0 -
CONTEXT

* Load the mapping of the virtual address in Context Reg.
Move it to ENLO and Write into the TLB.
*There could be a TLB miss again during the mapping of the
data or instruction address. The processor will jump to the
general exception vector since the EXL is 1. (Option to
complete the first level refill in the general exception
handler or ERET to the original instruction and take the
exception again).

* ERET is not allowed in the branch delay slot of a Jump or
Branch
Instruction.
*Since the ERET does not have a delay slot, the processor
does not
execute the instruction that immediately follows the ERET.
*PC <- EPC; EXL <- 0
*LLbit <- 0

ERET
80 MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

5.9 Interrupts

endent

nter
Figure 5-5 Reset, Soft Reset and NMI Exception Handling and Servicing Guidelines

5.9 Interrupts

The 20Kc processor supports eight interrupt requests, broken down into four categories:

• Software interrupts - Two software interrupt requests are made via software writes to bits IP0 and IP1 of theCause
register.

• Hardware interrupts - Six hardware interrupt requests numbered 0 through 5 are made via implementation-dep
external requests to the processor.

• Timer interrupt - A timer interrupt is raised when theCount andCompare registers reach the same value.

• Performance counter interrupt - A performance counter interrupt is raised when the most significant bit of the cou
is a one, and the interrupt is enabled by the IE bit in the performance counter control register.

Random <- TLBENTRIES - 1
Wired <- 0
Config <- Update(31:6)II
Undef(5:0) Status:
BEV <- 1
TS <- 0
SR <- 0
ERL <- 1

Status:
BEV <- 1
TS <- 0
SR <- 1
ERL <- 1

Soft Reset or NMI Exception Reset Exception

ErrorEPC <- PC

PC <- 0xFFFF_FFFF_PFC0_0000

R
es

et
, S

of
t R

es
et

 a
nd

 N
M

I E
xc

ep
tio

n
H

an
dl

in
g

(H
W

)
R

es
et

,S
of

tR
es

et
an

d
N

M
I

S
er

vi
ci

ng
 G

ui
de

lin
es

 (
S

W
)

Status bit
19 (NMI)

Status bit
20 (SR)NMI Service Code

Soft Reset Service Code Reset Service CodeERET

(Optional)

= 1

= 0

= 0

= 1
MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10 81

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

Chapter 5 Exceptions and Interrupts

rdware

re

r
n

Timer interrupts, performance counter interrupts, and hardware interrupt 5 are combined to create the ultimate ha
interrupt 5. Timer interrupt is multiplexed with the hardware interrupt 5 based on the value of bit [24] of theConfig
register. The Performance counter interrupt is then OR-ed with the multiplexed value to create the final hardwa
interrupt 5.

The current interrupt requests are visible via the IP field in theCauseregister on any read of that register (not just afte
an interrupt exception has occurred). The mapping ofCause register bits to the various interrupt requests is shown i
Table 5-14.

For each bit of the IP field in theCause register there is a corresponding bit in the IM field in theStatus register. An
interrupt is only taken when all of the following are true:

• An interrupt request bit is a one in the IP field of theCause register.

• The corresponding mask bit is a one in the IM field of theStatusregister. The mapping of bits is shown inTable 5-14.

• The IE bit in theStatus register is a one.

• The DM bit in theDebug register is a zero

• The EXL and ERL bits in theStatus register are both zero.

Logically, the IP field of theCauseregister is bit-wise ANDed with the IM field of theStatusregister, the eight resultant
bits are ORed together and that value is ANDed with the IE bit of theStatusregister. The final interrupt request is then
asserted only if both the EXL and ERL bits in theStatusregister are zero, and the DM bit in theDebugregister is zero,
corresponding to a non-exception, non-error, non-debug processing mode.

Table 5-14 Mapping of Interrupts to theCause and Status Registers

Cause Register Bit Status Register Bit

Interrupt Type
Interrupt
Number Number Name Number Name

Software Interrupt
0 8 IP0 8 IM0

1 9 IP1 9 IM1

Hardware Interrupt

0 10 IP2 10 IM2

1 11 IP3 11 IM3

2 12 IP4 12 IM4

3 13 IP5 13 IM5

4 14 IP6 14 IM6

Hardware Interrupt, Timer Interrupt, or
Performance Counter Interrupt 5 15 IP7 15 IM7
82 MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

.

emory
 a unique

g-point

ter.
Chapter 6

Coprocessor Registers

The 20Kc processor implements both Coprocessor 0 (CP0) and Coprocessor 1 (CP1) of the MIPS architecture

The System Control Coprocessor 0 (CP0) provides the register interface to the 20Kc processor and supports m
management, address translation, exception handling, and other privileged operations. Each CP0 register has
number that identifies it; this number is referred to as theregister number. For instance, thePageMaskregister is register
number 5. For more information on the EJTAG registers, refer toChapter 11, “EJTAG Debug Support.”

The System Control Coprocessor 1 (CP1) provides the register interface to the 20Kc processor to support floatin
operations. As with CP0, each CP1 register also has a unique register number that identifies it.

This chapter contains the following sections:

• Section 6.1, "CP0 Register Summary"

• Section 6.2, "CP0 Registers"

• Section 6.3, "CP0 Hazards"

• Section 6.4, "CP1 Register Summary"

• Section 6.5, "CP1 Registers"

6.1 CP0 Register Summary

Table 6-1 lists the CP0 registers in numerical order. The individual registers are described throughout this chap

Table 6-1 CP0 Registers

Register
Number Register Name Function

0 Index1 Index into the TLB array

1 Random1 Randomly generated index into the TLB array

2 EntryLo01 Low-order portion of the TLB entry for even-numbered virtual pages

3 EntryLo11 Low-order portion of the TLB entry for odd-numbered virtual pages

4 Context1, 2 Pointer to page table entry in memory

5 PageMask1 Controls the variable page sizes in TLB entries

6 Wired1 Controls the number of fixed (“wired”) TLB entries

7 Reserved Reserved

8 BadVAddr2 Reports the address for the most recent address-related exception

9 Count2 Processor cycle count

10 EntryHi1 High-order portion of the TLB entry

11 Compare2 Timer interrupt control
MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10 83

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

Chapter 6 Coprocessor Registers

. The
6.2 CP0 Registers

The CP0 registers provide the interface between the ISA and the architecture. Each register is discussed below
registers are presented in numerical order, first by register number, then by select field number.

12 Status2 Processor status and control

13 Cause2 Cause of last general exception

14 EPC2 Program counter at last exception

15 PRId Processor identification and revision

16 Config/Config1 Configuration register

17 LLAddr Load linked address

18 WatchLo2 Low-order watchpoint address

19 WatchHi2 High-order watchpoint address

20 XContext1, 2 Pointer to page table entry in extended memory

21 - 22 Reserved Reserved

23 Debug3 Debug control and exception status

24 DEPC3 Program counter at last debug exception

25 PerfCount Performance counter register

26 DErrCtl/IErrCtl Error Checking and control register

27 CacheErr Provides an interface to the cache error detection logic

28 ITagLo/IDataLo,
DTagLo/DDataLo Low-order portion of cache tag interface

29 ITagHi/IDataHi
DTagHi/DDataHi High-order portion of cache tag interface

30 ErrorEPC2 Program counter at last error

31 DESAVE3 Debug handler scratchpad register

1. Registers used in memory management.

2. Registers used in exception processing.

3. Registers used in debug.

Table 6-1 CP0 Registers (Continued)

Register
Number Register Name Function
84 MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

6.2 CP0 Registers

 state of

, and

ritten
For each register described below, field descriptions include the read/write properties of the field and the reset
the field. For the read/write properties of the field, the following notation is used:

6.2.1 Index Register (CP0 Register 0, Select 0)

TheIndex register is a 32-bit read/write register that contains the index used to access the TLB for TLBP, TLBR
TLBWI instructions.

The operation of the processor is UNDEFINED if a value greater than or equal to the number of TLB entries is w
to theIndex register.

Index Register Format

Table 6-2 CP0 Register Field Types

Read/Write
Notation Hardware Interpretation Software Interpretation

R/W

A field in which all bits are readable and writable by software and, potentially, by hardware.

Hardware updates of this field are visible by software read. Software updates of this field are
visible by hardware read.

If the reset state of this field is “Undefined,” either software or hardware must initialize the value
before the first read will return a predictable value. This should not be confused with the formal
definition of UNDEFINED behavior.

R

A field that is either static or is updated only by
hardware.

If the Reset State of this field is either “0” or
“Preset”, hardware initializes this field to zero
or to the appropriate state, respectively, on
powerup.

If the Reset State of this field is “Undefined”,
hardware updates this field only under those
conditions specified in the description of the
field.

A field to which the value written by software
is ignored by hardware. Software may write
any value to this field without affecting
hardware behavior. Software reads of this field
return the last value updated by hardware.

If the Reset State of this field is “Undefined,”
software reads of this field result in an
UNPREDICTABLE value except after a
hardware update done under the conditions
specified in the description of the field.

0 A field that hardware does not update, and for
which hardware can assume a zero value.

A field to which the value written by software
must be zero. Software writes of non-zero
values to this field may result in UNDEFINED
behavior of the hardware. Software reads of
this field return zero as long as all previous
software writes are zero.

If the Reset State of this field is “Undefined,”
software must write this field with zero before
it is guaranteed to read as zero.

31 30 6 5 0

P 0 Index
MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10 85

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

Chapter 6 Coprocessor Registers

The

ontents

gister
lower
avoids
ycles
6.2.2 Random Register (CP0 Register 1, Select 0)

TheRandom register is a read-only register whose value is used to index the TLB during a TLBWR instruction.
width of the Random field is calculated in the same manner as that described for theIndex register above.

The value of the register varies between an upper and lower bound as follow:

• A lower bound is set by the number of TLB entries reserved for exclusive use by the operating system (the c
of theWiredregister). The entry indexed by theWiredregister is the first entry available to be written by a TLB Write
indexed operation.

• An upper bound is set by the total number of TLB entries minus 1.

Within the required constraints of the upper and lower bounds, the processor selects values for the Random re
according to the Not Last Used algorithm. The value is selected in a round-robin manner within the upper and
bounds. However, when the selected value is the last entry hit, the next value is selected instead. This algorithm
a potential live lock condition that exists for implementations that simply increment the Random field every ‘n’ c.

The processor initializes theRandom register to the upper bound on a Reset exception and when theWired register is
written.

Random Register Format

Table 6-3 Index Register Field Descriptions

Fields

Description
Read/
Write Reset StateName Bit(s)

P 31

Probe Failure. Hardware writes this bit during execution of
the TLBP instruction to indicate whether a TLB match
occurred:

0: A match occurred, and the Index field
 contains the index of the matching entry

 1: No match occurred and the Index field is
UNPREDICTABLE

R Undefined

0 30:6 Must be written as zero; returns zero on read. 0 0

Index 5:0

TLB index. Software writes this field to provide the index
to the TLB entry referenced by the TLBR and TLBWI
instructions.

Hardware writes this field with the index of the matching
TLB entry during execution of the TLBP instruction. If the
TLBP fails to find a match, the contents of this field are
UNPREDICTABLE .

R/W Undefined

31 6 5 0

0 Random
86 MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

6.2 CP0 Registers

ns.

ed,

bute
6.2.3 EntryLo0, EntryLo1 (CP0 Registers 2 and 3, Select 0)

The pair ofEntryLo registers act as the interface between the TLB and the TLBR, TLBWI, and TLBWR instructio
TheEntryLo0 register stores the entries for even pages andEntryLo1 register stores the entries for odd pages.

The contents of theEntryLo0 andEntryLo1 registers are undefined after an address error, TLB invalid, TLB modifi
or TLB refill exceptions.

EntryLo0, EntryLo1 Register Format

Table 6-6lists the encoding of the C field of theEntryLo0andEntryLo1registers and the K0 field of theConfigregister.
In prior MIPS implementations, there was little consistent interpretation or usage of the Cache Coherency Attri

Table 6-4 Random Register Field Descriptions

Fields

Description
Read/
Write Reset StateName Bit(s)

0 31:6 Must be written as zero; returns zero on read. 0 0

Random 5:0 TLB Random Index R TLB Entries - 1

63 30 29 6 5 3 2 1 0

0 PFN C D V G

Table 6-5 EntryLo0, EntryLo1 Register Field Descriptions

Fields

Description
Read/
Write Reset StateName Bit(s)

0 63:30 Reserved. Should be ignored on writes; returns zero on
read. R 0

PFN 29:6 Page Frame Number. Corresponds to bits 35:12 of the
physical address. R/W Undefined

C 5:3 Coherency attribute of the page. SeeTable 6-6. R/W Undefined

D 2

“Dirty” or write-enable bit, indicating that the page has
been written, and/or is writable. If this bit is a one, stores
to the page are permitted. If this bit is a zero, stores to the
page cause a TLB Modified exception.

R/W Undefined

V 1

Valid bit, indicating that the TLB entry, and thus the virtual
page mapping are valid. If this bit is a one, accesses to the
page are permitted. If this bit is a zero, accesses to the page
cause a TLB Invalid exception.

R/W Undefined

G 0

Global bit. On a TLB write, the logical AND of the G bits
in both the EntryLo0 and EntryLo1 registers become the G
bit in the TLB entry. If the TLB entry G bit is a one, ASID
comparisons are ignored during TLB matches. On a read
from a TLB entry, the G bits of both EntryLo0 and
EntryLo1 reflect the state of the TLB G bit.

R/W Undefined
MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10 87

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

Chapter 6 Coprocessor Registers

hould

 This
erating

that

ified
encodings.Table 6-6 describes the 20Kc-specific definitions that are permitted by the MIPS64 architecture and s
not be interpreted as being required by the MIPS64 architecture.

6.2.4 Context Register (CP0 Register 4, Select 0)

TheContext register is a read/write register containing a pointer to an entry in the page table entry (PTE) array.
array is an operating system data structure that stores virtual-to-physical translations. During a TLB miss, the op
system loads the TLB with the missing translation from the PTE array. TheContextregister is primarily intended for use
with the TLB Refill handler, but is also loaded by hardware on an XTLB Refill and may be used by software in
handler. TheContextregister duplicates some of the information provided in theBadVAddrregister but is organized in
such a way that the operating system can directly reference an 8-byte page table entry (PTE) in memory.

A TLB exception (TLB Refill, TLB Invalid, or TLB Modified) causes bits VA31:13 of the virtual address to be written
into the BadVPN2 field of theContext register. The PTEBase field is written and used by the operating system.

The BadVPN2 field of theContextregister is not defined after an address error exception and this field may be mod
by hardware during the address error exception sequence.

Context Register Format

Table 6-6 Cache Coherency Attributes

C[5:3] Value Cache Coherency Attributes

0 Cacheable, Noncoherent, Write Through, No Write Allocate

1 Reserved

2 Uncached

3 Cacheable, Noncoherent (Writeback)

4 Cacheable, Coherent (Writeback)

5 Reserved

6 Reserved

7 Uncached Accelerated

63 23 22 4 3 2 1 0

PTEBase BadVPN2 0

Table 6-7 Context Register Field Descriptions

Fields

Description
Read/
Write Reset StateName Bit(s)

PTEBase 63:23

This field is for use by the operating system and is
normally written with a value that allows the operating
system to use theContext Register as a pointer into the
current PTE array in memory.

R/W Undefined

BadVPN2 22:4 This field is written by hardware on a TLB miss. It
contains bits VA31:13 of the virtual address that missed. R Undefined

0 3:0 Must be written as zero; returns zero on read. 0 0
88 MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

6.2 CP0 Registers

ask

e TLB

Wired

to the
6.2.5 PageMask Register (CP0 Register 5, Select 0)

ThePageMaskregister is a read/write register used for reading from and writing to the TLB. It holds a comparison m
that sets the variable page size for each TLB entry as shown inTable 6-9.

PageMask Register Format

6.2.6 Wired Register (CP0 Register 6, Select 0)

TheWiredregister is a read/write register that specifies the boundary between the wired and random entries in th
as shown inFigure 6-1. The width of the Wired field is calculated in the same manner as that described for theIndex
register above. Wired entries are fixed, non-replaceable entries that are not overwritten by a TLBWR instruction.
entries can be overwritten by a TLBWI instruction.

TheWiredregister is set to zero by a Reset exception. Writing theWiredregister causes theRandomregister to reset to
its upper bound.

The operation of the processor is undefined if a value greater than or equal to the number of TLB entries is written
Wired register.

31 25 24 13 12 0

0 Mask 0

Table 6-8 PageMask Register Field Descriptions

Fields

Description
Read/
Write Reset StateName Bit(s)

Mask 24:13
The Mask field is a bit mask in which a “1” indicates that
the corresponding bit of the virtual address should not
participate in the TLB match.

R/W Undefined

0 31:25,
12:0 Must be written as zero; returns zero on read. 0 0

Table 6-9 Values for the Mask Field of the PageMask Register

Page Size

Bit

24 23 22 21 20 19 18 17 16 15 14 13

4 KBytes 0 0 0 0 0 0 0 0 0 0 0 0

16 KBytes 0 0 0 0 0 0 0 0 0 0 1 1

64 KBytes 0 0 0 0 0 0 0 0 1 1 1 1

256 KBytes 0 0 0 0 0 0 1 1 1 1 1 1

1 MByte 0 0 0 0 1 1 1 1 1 1 1 1

4 MByte 0 0 1 1 1 1 1 1 1 1 1 1

16 Mbyte 1 1 1 1 1 1 1 1 1 1 1 1
MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10 89

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

Chapter 6 Coprocessor Registers

he

g error.
Figure 6-1 Wired and Random Entries in the TLB

Wired Register Format

6.2.7 BadVAddr Register (CP0 Register 8, Select 0)

TheBadVAddr register is a read-only register that captures the most recent virtual address that caused one of t
following exceptions:

• Address error (AdEL or AdES)

• TLB/XTLB Refill

• TLB Invalid (TLBL, TLBS)

• TLB Modified

TheBadVAddrregister does not capture address information for cache or bus errors, since neither is an addressin

BadVAddr Register Format

31 6 5 0

0 Wired

Table 6-10 Wired Register Field Descriptions

Fields

Description
Read/
Write Reset StateName Bit(s)

0 31:6 Must be written as zero; returns zero on read. 0 0

Wired 5:0 TLB wired boundary. R/W 0

63 0

BadVAddr

Entry n-1

Entry 10

Entry 0

10

R
an

do
m

W
ire

d

Wired Register
90 MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

6.2 CP0 Registers

tired, or
lock.

ing the

tions.

nd
ce

n be
6.2.8 Count Register (CP0 Register 9, Select 0)

The Count register acts as a timer, incrementing at a constant rate whether or not an instruction is executed, re
any forward progress is made through the pipeline. The 20Kc processor increments the counter by one every c

TheCountregister continues to count when the processor enters a low power mode, as might occur after execut
Wait instruction. The Count register can be written for functional or diagnostic purposes, including at reset or to
synchronize processors.

The Count register continues incrementing while the processor is in debug mode.

Count Register Format

6.2.9 EntryHi Register (CP0 Register 10, Select 0)

TheEntryHi register contains the virtual address match information used for TLB read, write, and access opera

A TLB exception (TLB Refill, XTLB Refill, TLB Invalid, or TLB Modified) causes the bits corresponding to the R a
VPN2 fields to be written into theEntryHi register. The ASID field is written by software with the current address spa
identifier value and is used during the TLB comparison process to determine TLB match.

The VPN2 and R fields of theEntryHi register are not defined after an address error exception and these fields ca
modified by hardware during the address error exception sequence. Software writes of theEntryHi register (via MTC0
or DMTC0) do not cause the implicit write of address-related fields in theBadVAddr, Context, orXContext registers.

EntryHi Register Format

Table 6-11 BadVAddr Register Field Description

Fields

Description
Read/
Write Reset StateName Bits

BadVAddr 63:0 Bad virtual address R Undefined

31 0

Count

Table 6-12 Count Register Field Description

Fields

Description
Read/
Write Reset StateName Bits

Count 31:0 Interval counter. R/W Undefined

63 6261 4039 13 12 8 7 0

R 0 VPN2 0 ASID
MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10 91

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

Chapter 6 Coprocessor Registers

e

 is

nostic
:

6.2.10 Compare Register (CP0 Register 11, Select 0)

TheCompareregister acts in conjunction with theCountregister to implement a timer and timer interrupt function. Th
Compare register maintains a stable value and does not change on its own.

When the value of theCountregister equals the value of theCompareregister, an interrupt request is multiplexed with
hardware interrupt 5 to set interrupt bit IP(7) in theCause register. This causes an interrupt as soon as the interrupt
enabled.

For diagnostic purposes, theCompare register is a read/write register. In normal use, however, theCompare register is
write-only. Writing a value to theCompare register, as a side effect, clears the timer interrupt.

Compare Register Format

6.2.11 Status Register (CP0 Register 12, Select 0)

TheStatusregister (SR) is a read/write register that contains the operating mode, interrupt enabling, and the diag
states of the processor. Fields of this register combine to create operating modes for the processor, as follows

Table 6-13 EntryHi Register Field Descriptions

Fields

Description
Read/
Write Reset StateName Bits

R 63:62

Virtual memory region, corresponding to VA63:62.

 00: xuseg: user address region

 01: xsseg: supervisor address region.

 10: Reserved

 11: kseg: kernel address region

This field is written by hardware on a TLB exception or on a
TLB read, and is written by software before a TLB write.

R/W Unspecified

VPN2 39:13
VA39:13 of the virtual address (virtual page number / 2). This
field is written by hardware on a TLB exception or on a TLB
read, and is written by software before a TLB write.

R/W Unspecified

ASID 7:0

Address space identifier. This field is written by hardware on
a TLB read and by software to establish the current ASID
value for TLB write and against which TLB references match
each entry’s TLB ASID field.

R/W Unspecified

0 61:40,
12:8 Must be written as zero; returns zero on read. 0 0

31 0

Compare

Table 6-14 Compare Register Field Description

Fields

Description
Read/
Write Reset StateName Bit(s)

Compare 31:0 Interval count compare value R/W Undefined
92 MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

6.2 CP0 Registers

odes.

usable,
Interrupt Enable : Interrupts are enabled when all of the following conditions are true:

• IE = 1

• EXL = 0

• ERL = 0

• DM = 0

If these conditions are met, the settings of the IM and IE bits enable the interrupt.

Operating Modes: The following CPU Status register bit settings are required for user, supervisor, and kernel m

• User Mode: KSU = 10, EXL = 0, ERL = 0, and DM = 0

• Supervisor Mode: KSU = 01, EXL = 0, ERL = 0, and DM = 0

• Kernel Mode: KSU = 00, or EXL = 1, or ERL = 1, and DM = 0

Coprocessor Accessibility: The Status register CU bits control coprocessor accessibility. If any coprocessor is un
an instruction that accesses it generates an exception.

Coprocessor 0 is always enabled in kernel mode, regardless of the setting of the CU0 bit.

Status Register Format
31 28 27 26 25 24 23 22 21 20 19 18 17 16 15 8 7 6 5 4 3 2 1 0

CU3-CU0 RP FR RE 0 PX BEV TS SR NMI 0 CE DE IM7-IM0 KX SX UX KSU ERL EXL IE

Table 6-15 Status Register Field Descriptions

Fields

Description
Read/
Write Reset StateName Bits

CU3:CU0 31:28

Controls access to Coprocessors 1 and 0: CU0 controls accesses
to CP0, while CU1 controls accesses to CP1. Each bit is defined
as follows:

 0: access not allowed

 1: access allowed

Coprocessor 0 can always be accessed when the processor is
running in Kernel Mode or Debug Mode, independent of the
state of the CU0 bit.

Execution of all floating-point instructions, including those
encoded with the COP1X opcode, is controlled by the CU1
enable.

CU2 and CU3 are not used. They are ignored on write and are
read as zeros.

R/W Unspecified

RP 27
Setting this bit initiates reduced power mode. Resetting the bit
returns the 20Kc processor to normal operation. Refer toChapter
10, “Power Management,” for more information.

R/W 0

FR 26

Controls the floating-point register mode:

 0: Floating-point registers can contain any 32-bit data type.
64-bit datatypes are stored in even-odd pairs of registers.

 1: Floating-point registers can contain any data type.

R/W Unspecified
MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10 93

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

Chapter 6 Coprocessor Registers
RE 25

Used to enable reverse-endian memory references while the
processor is running in user mode:

 0: User Mode uses configured endianness

 1: User Mode uses reversed endianness

Debug Mode, Kernel Mode, and Supervisor Mode references are
not affected by the state of this bit.

R/W Unspecified

0 24 Ignored on a write and read as zero. R 0

PX 23

Enables access to 64-bit operations in User Mode without
enabling 64-bit addressing:

 0: 64-bit operations are not enabled

 1: 64-bit operations are enabled

R/W Unspecified

BEV 22

Controls the location of exception vectors:

 0: Normal

 1: Bootstrap

R/W 1

TS 21

Indicates that the TLB has detected a match on multiple entries.
This detection occurs only on a write to the TLB. When such a
detection occurs, the processor initiates a machine check
exception and sets this bit. The existing TLB entry or entries is
retained but ceases to participate in address translation. The
entry being written is stored into the TLB, and the processor
continues operation.

This condition can be corrected by software. Software should
clear this bit before resuming normal operation.

Software writes to this bit may not cause a 0-to-1 transition.

R/W 0

SR 20

Indicates that the entry through the reset exception vector was
due to a Soft Reset:

 0: Not Soft Reset (NMI or Reset)

 1: Soft Reset

R/W
1 for Soft
Reset; 0

otherwise

NMI 19

Indicates that the entry through the reset exception vector was
due to an NMI

 0: Not NMI (Soft Reset or Reset)

 1: NMI

R/W 1 for NMI; 0
otherwise

0 18 Must be written as zero; returns zero on read. 0 0

CE 17

Enables forcing cache parity error for store instructions:

0: data parity is computed

1: value in the PA field of theDErrCtl register is used instead

R/W Unspecified

DE 16

Disables exceptions caused by cache parity errors.

 0: enabled

 1: disabled

R/W Unspecified

Table 6-15 Status Register Field Descriptions (Continued)

Fields

Description
Read/
Write Reset StateName Bits
94 MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

6.2 CP0 Registers
IM 15:8

Interrupt Mask: Controls the enabling of each of the external,
internal and software interrupts.

0: interrupt request disabled

1: interrupt request enabled

R/W Unspecified

KX 7

Enables the following behavior:

Access to 64-bit Kernel Segments

Use of the XTLB Refill Vector for references to Kernel Segments

 0: Access to 64-bit Kernel Segments disabled,
 TLB Refill Vector used for references to Kernel Segments

 1: Access to 64-bit Kernel Segments enabled,
 XTLB Refill Vector used for references to
 Kernel Segments

R/W Unspecified

SX 6

Enables the following behavior:

Access to 64-bit Supervisor Segments

Use of the XTLB Refill Vector for references to Supervisor
Segments

0: Access to 64-bit Supervisor Segments
 disabled, TLB Refill Vector used for
 references to Supervisor Segments

 1: Access to 64-bit Supervisor Segments
 enabled, XTLB Refill Vector used for
 references to Supervisor Segments

R/W Unspecified

UX 5

Enables the following behavior:

Access to 64-bit User Segments

Use of the XTLB Refill Vector for references to User Segments

Execution of instructions which perform 64-bit operations while
the processor is operating in User Mode

 0: Access to 64-bit User Segments
 disabled, TLB Refill Vector used for
 references to User Segments, execution
 of instructions which perform 64-bit
 operations is disallowed while the processor
 is running in User Mode

 1: Access to 64-bit User Segments
 enabled, XTLB Refill Vector used for
 references to User Segments, execution
 of instructions which perform 64-bit
 operations is allowed while the processor
 is running in User Mode

R/W Unspecified

KSU 4:3

The encoding of this field denotes the base operating mode of the
processor. The encoding of this field is:

 002: Kernel Mode

 012: Supervisor Mode

 102: User Mode

 112: Reserved

R/W Unspecified

Table 6-15 Status Register Field Descriptions (Continued)

Fields

Description
Read/
Write Reset StateName Bits
MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10 95

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

Chapter 6 Coprocessor Registers

ftware
d WP
6.2.12 Cause Register (CP0 Register 13, Select 0)

TheCause register primarily describes the cause of the most recent exception. In addition, fields also control so
interrupt requests and the vector through which interrupts are dispatched. With the exception of the IP[1:0], IV, an
fields, all fields in the Cause register are read-only.

Cause Register Format

ERL 2

Error Level; Set by the processor when a Reset, Soft Reset, NMI
or Cache Error exception are taken.

 0: normal level

 1: error level

When ERL is set:

• The processor is running in kernel mode

• Interrupts are disabled

• The ERET instruction uses the return address held in
ErrorEPC instead of EPC

• The entire 232 bytes of kuseg are treated as an unmapped and
uncached region. In addition when the UX bit is a one in the
Status register, the range of addresses between 232 and 236- 1
are also treated as an unmapped, uncached Segment.
Accesses to xkuseg to addresses between 236 and 240 - 1
however would result in address error exceptions. This allows
main memory to be accessed in the presence of cache errors.
The operation of the processor isUNDEFINED if the ERL
bit is set while the processor is executing instructions from
kuseg.

R/W 1

EXL 1

Exception Level; Set by the processor when any exception other
than Reset, Soft Reset, NMI or Cache Error exception are taken.

 0: normal level

 1: exception level

When EXL is set:

• The processor is running in Kernel Mode

• Interrupts are disabled.

• TLB/XTLB Refill exceptions will use the general exception
vector instead of the TLB/XTLB Refill vectors.

• EPC and CauseBD will not be updated if another exception is
taken

R/W Unspecified

IE 0

Interrupt Enable: Acts as the master enable for software and
hardware interrupts:

 0: disable interrupts

 1: enables interrupts

R/W Unspecified

31 30 29 28 27 24 23 22 21 16 15 10 9 8 7 6 2 1 0

BD 0 CE 0 IV WP 0 IP[7:2] IP[1:0] 0 Exc Code 0

Table 6-15 Status Register Field Descriptions (Continued)

Fields

Description
Read/
Write Reset StateName Bits
96 MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

6.2 CP0 Registers
Table 6-16 Cause Register Field Descriptions

Fields

Description
Read/
Write Reset StateName Bit(s)

BD 31

Indicates whether the last exception taken occurred in a branch
delay slot:

 0: Not in delay slot

 1: In delay slot

Note that the BD bit is not updated on a new exception if the
EXL bit is set.

R Undefined

CE 29:28

Coprocessor unit number referenced when a Coprocessor
Unusable exception is taken. This field is loaded by hardware
on every exception but is unpredictable for all exceptions
except for Coprocessor Unusable.

R Undefined

IV 23

Indicates whether an interrupt exception uses the general
exception vector or a special interrupt vector:

 0: Use the general exception vector (0x180)

 1: Use the special interrupt vector (0x200)

R/W Undefined

WP 22

Indicates that a watch exception was deferred because
StatusEXL or StatusERL was a one at the time the watch
exception was detected. This bit indicates that the watch
exception was deferred and causes the exception to be initiated
once StatusEXL and StatusERL are both zero. As such, software
must clear this bit as part of the watch exception handler to
prevent a watch exception loop.

R/W Undefined

IP[7:2] 15:10

Indicates an external interrupt is pending:

15: Hardware interrupt 5 (or timer interrupt or perf. counter)

 14: Hardware interrupt 4

 13: Hardware interrupt 3

 12: Hardware interrupt 2

 11: Hardware interrupt 1

 10: Hardware interrupt 0

R Undefined

IP[1:0] 9:8

Controls the request for software interrupts:

 9: Request software interrupt 1

 8: Request software interrupt 0

R/W Undefined

Exc Code 6:2 Exception code — seeTable 6-17. R Undefined

0

30,
27:24,

21:16, 7,
1:0

Must be written as zero; returns zero on read. 0 0

Table 6-17 Cause Register Exc Code Field Descriptions

Exception
Code Value Mnemonic Description

0 Int Interrupt
MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10 97

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

Chapter 6 Coprocessor Registers

mes

uction
6.2.13 Exception Program Counter (CP0 Register 14, Select 0)

The Exception Program Counter (EPC)is a read/write register that contains the address at which processing resu
after an exception has been serviced. All bits of theEPC register are significant and must be writable.

For synchronous (precise) exceptions, theEPC contains one of the following:

• The virtual address of the instruction that was the direct cause of the exception.

• The virtual address of the immediately preceding branch or jump instruction, when the exception causing instr
is in a branch delay slot and the Branch Delay bit in theCause register is set.

On new exceptions, the processor does not write to theEPC register when the EXL bit in theStatus register is set.
However, the register can still be written via the MTC0 instruction.

1 Mod TLB modification exception

2 TLBL TLB exception (load or instruction fetch)

3 TLBS TLB exception (store)

4 AdEL Address error exception (load or instruction fetch)

5 AdES Address error exception (store)

6 IBE Bus error exception (instruction fetch)

7 DBE Bus error exception (data reference: load or store)

8 Sys Syscall exception

9 Bp Breakpoint exception

10 RI Reserved instruction exception

11 CpU Coprocessor Unusable exception

12 Ov Integer Overflow exception

13 Tr Trap exception

14 - Reserved

15 FPE Floating-Point Exception

16-22 - Reserved

23 WATCH Reference to WatchHi/WatchLo address

24 MCheck Machine check

25-29 - Reserved

30 CacheErr

Cache error. In normal mode a cache error exception has a dedicated vector
and the Cause register is not updated. If a cache error occurs while in debug
mode, this code is used to indicate that reentry to debug mode was caused by
a cache error.

31 - Reserved

Table 6-17 Cause Register Exc Code Field Descriptions (Continued)

Exception
Code Value Mnemonic Description
98 MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

6.2 CP0 Registers

ed by
EPC Register Format

6.2.14 Processor Identification (CP0 Register 15, Select 0)

TheProcessor Identification (PRId) register is a 32-bit read-only register that contains information identifying the
manufacturer, manufacturer options, processor identification, and revision level of the processor.

Processor Identification Register Format

6.2.15 Config Register (CP0 Register 16, Select 0)

TheConfigregister specifies various configuration and capabilities information. Most of the fields in theConfigregister
are initialized by hardware during the Reset exception process, or are constant. One field, K0, must be initializ
software in the Reset exception handler.

63 0

EPC

Table 6-18 EPC Register Field Description

Fields

Description
Read/
Write Reset StateName Bit(s)

EPC 63:0 Exception Program Counter. R/W Undefined

31 24 23 16 15 8 7 0

Company Options Company ID Processor ID Revision

Table 6-19 PRId Register Field Descriptions

Fields

Description
Read/
Write Reset StateName Bit(s)

Company
Options 31:24

Available to the designer or manufacturer of the processor for
company-dependent options. SOC designers can hardwire the
setting using input portSI_PRIdOpt[7:0].

R

Preset to the state
of

SI_PRIdOpt[7:0
]

Company
ID 23:16 Identifies the company that designed or manufactured the

processor. The setting denotes "MIPS Technologies". R 0x01

Processor
ID 15:8

Identifies the type of processor. This field allows software to
distinguish between the various types of MIPS Technologies
processors. The setting denotes "MIPS64 20Kc Processor Core".

R 0x82

Revision 7:0

The revision number of the processor. This field allows software
to distinguish between one revision and another of the same
processor type. The revision is broken into the following
subfields:

 [7:5] Major revision
 [4:2] Minor revision
 [1:0] Patch revision

The revision field is initially set to 0x20 and will be modified on
each revision of the processor.

R Preset
MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10 99

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

Chapter 6 Coprocessor Registers
Config Register Format — Select 0
31 30 28 27 26 25 24 23 22 21 16 15 14 13 12 10 9 7 6 4 3 2 0

M EC DD LP SP TI TD TF 0 BE AT AR MT 0 VI K0

Table 6-20 Config Register Field Descriptions

Fields

Description
Read/
Write Reset StateName Bits

M 31 Denotes that the Config1 register is implemented at a select
field value of 1. R 1

EC 30:28

Processor to System (External) clock ratio

0: Reserved

1: 2:1

2: 3:1

3: 4:1

4: 5:1

5: 6:1

6: 7:1

7: 8:1

R Externally Set

DD 27

Indicates double data rate bus mode:

 0: synchronous bus mode

 1: double data rate bus mode

R 0

LP 26

Indicates a bus configuration with low packaging cost:

 0: 64-bit bus

 1: 32-bit bus

R Externally Set

SP 25

System Command Parity. This bit determines when parity
is checked on the SysCmd and SysAD buses.

0 - SysCmd parity is never checked. SysAD parity is not
checked for command transactions. i.e. when SysAD
contains address.

1 - SysCmd parity is always checked and SysAD parity is
checked for command transactions.

R/W 0

TI 24

Timer Disable. The Timer interrupt is multiplexed with the
hardware interrupt 5 based on the value of this bit. If this
bit is set, hardware interrupt 5 is selected. If this bit is
cleared the timer interrupt is selected. This multiplexed
value is then ORed with the performance counter interrupt
to create the final hardware interrupt 5.

R/W 0
100 MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

6.2 CP0 Registers
TD 23

Test Done. The value ofConfig register bit TD is
multiplexed on external pinTS_BistDone and while the
core is not in the processor monitor mode and BIST is not
active.

TD TF Description

0 0 No New Action

0 1 Reserved

1 0 Output a pass signature on the external pin

1 1 Output a fail signature on the external pin

R/W 0

TF 22

Test Fail. Refer to TD field.

The values ofConfig register bit TF are multiplexed on
external pinTS_BistFail while the core is not in the
processor monitor mode and BIST is not active.

R/W 0

0 21:16 Must be written as zero. 0 Unspecified

BE 15

Endian mode in which the processor is running:

 0: Little endian

 1: Big endian

R Externally Set

AT 14:13

Architecture type implemented by the processor:

 0: MIPS32

 1: MIPS64 with 32-bit addresses only

 2: MIPS64 with 32/64-bit addresses

 3: Reserved

R 2

AR 12:10

Architecture revision level:

 0: Revision 1

 1-7: Reserved

R 0

MT 9:7

MMU Type:

 0: None

 1: Standard TLB

 2: Standard BAT

 3: Standard fixed mapping

 4: Reserved

 5: Reserved

 6: Reserved

 7: Reserved

R 1

0 6:4 Must be written as zero; returns zero on read. 0 0

VI 3 I-Cache is virtual. R 1

Table 6-20 Config Register Field Descriptions (Continued)

Fields

Description
Read/
Write Reset StateName Bits
MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10 101

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

Chapter 6 Coprocessor Registers

n the

ine size,
6.2.16 Config1 Register (CP0 Register 16, Select 1)

TheConfig1register is an adjunct to the Config register and encodes additional capabilities information. All fields i
Config1 register are read-only.

The instruction and data cache configuration parameters include encodings for the number of sets per way, the l
and the associativity. The total cache size for a cache is therefore:

Associativity * Line Size * Sets Per Way = 4 ways * 32 bytes * 256 sets = 32 Kbytes

Config1 Register Format — Select 1

K0 2:0 Kseg0 coherency algorithm. SeeTable 6-6for the encoding
of this field. R/W 2

31 30 25 24 22 21 19 18 16 15 13 12 10 9 7 6 5 4 3 2 1 0

0 MMU Size IS IL IA DS DL DA 0 PC WR CA EP FP

Table 6-21 Config1 Register Field Descriptions

Fields

Description
Read/
Write Reset StateName Bits

0 31

This bit is reserved to indicate that a Config2 register is
present. With this revision of the architecture, writes to this
bit must be ignored, and it must read as zero. Since the 20Kc
processor does not implement a Config2 register, this bit is
always zero.

R 0

MMU
Size - 1 30:25 Number of entries in the TLB minus one. R 47

IS 24:22

ICache sets per way:

 0: 64

 1: 128

 2: 256

 3: 512

 4: 1024

 5: 2048

 6: 4096

 7: Reserved

In the 20Kc processor, this value is 0x02 to indicate 256
ICache sets per way.

R 2

Table 6-20 Config Register Field Descriptions (Continued)

Fields

Description
Read/
Write Reset StateName Bits
102 MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

6.2 CP0 Registers
IL 21:19

ICache line size:

 0: No ICache present

 1: 4 bytes

 2: 8 bytes

 3: 16 bytes

 4: 32 bytes

 5: 64 bytes

 6: 128 bytes

 7: Reserved

In the 20Kc processor, this value is 0x04 to indicate a
32-byte ICache line size.

R 4

IA 18:16

ICache associativity:

 0: Direct mapped

 1: 2-way

 2: 3-way

 3: 4-way

 4: 5-way

 5: 6-way

 6: 7-way

 7: 8-way

In the 20Kc processor, this value is 0x03 to indicate a 4-way
set associative instruction cache.

R 3

DS 15:13

DCache sets per way:

 0: 64

 1: 128

 2: 256

 3: 512

 4: 1024

 5: 2048

 6: 4096

 7: Reserved

In the 20Kc processor, this value is 0x02 to indicate 256 data
cache sets per way.

R 2

Table 6-21 Config1 Register Field Descriptions (Continued)

Fields

Description
Read/
Write Reset StateName Bits
MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10 103

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

Chapter 6 Coprocessor Registers
DL 12:10

DCache line size:

 0: No DCache present

 1: 4 bytes

 2: 8 bytes

 3: 16 bytes

 4: 32 bytes

 5: 64 bytes

 6: 128 bytes

 7: Reserved

In the 20Kc processor, this value is 0x04 to indicate a
32-byte data cache line size.

R 4

DA 9:7

DCache associativity:

 0: Direct mapped

 1: 2-way

 2: 3-way

 3: 4-way

 4: 5-way

 5: 6-way

 6: 7-way

 7: 8-way

In the 20Kc processor, this value is 0x03 to indicate a 4-way
set associative data cache.

R 3

PC 4

Performance Counter registers implemented:

 0: No performance counter registers implemented

1: At least one performance counter register implemented

This bit is always 1 to indicate that the 20Kc processor
implements one performance register.

R 1

WR 3

Watch registers implemented:

 0: No watch registers implemented

 1: At least one watch register implemented

This bit is always 1 to indicate that the 20Kc processor
implements one watch register.

R 1

CA 2

Code compression (MIPS16) implemented:

0: No code compression

 1: Code compression

This bit is always 0 to indicate that the 20Kc processor does
not support code compression.

R 0

Table 6-21 Config1 Register Field Descriptions (Continued)

Fields

Description
Read/
Write Reset StateName Bits
104 MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

6.2 CP0 Registers

gister

atch
te some

e

of the
6.2.17 Load Linked Address (CP0 Register 17, Select 0)

TheLLAddr register contains the physical address read by the most recent Load Linked (LL) instruction. This re
is for diagnostic purposes only and serves no function during normal operation.

Load Linked Address Register Format

6.2.18 WatchLo Register (CP0 Register 18)

TheWatchLo andWatchHi registers together provide the interface to a watchpoint debug facility that initiates a w
exception if an instruction or data access matches the address specified in the registers. As such, they duplica
functions of the EJTAG debug solution. Watch exceptions are taken only if the EXL and ERL bits are zero in theStatus
register. If either bit is a one, the WP bit is set in theCause register, and the watch exception is deferred until both th
EXL and ERL bits are zero.

The 20Kc processor implements one pair of WatchLo and WatchHi registers, referencing them via the select field
MTC0/MFC0 and DMTC0/DMFC0 instructions. Software may determine that there is at least one pair ofWatchLoand
WatchHi registers implemented via the WR bit of theConfig1 register. See the discussion of the M bit in theWatchHi
register description below.

EP 1

EJTAG implemented:

 0: No EJTAG implemented

 1: EJTAG implemented

This bit is always 1 to indicate that the 20Kc processor
implements EJTAG.

R 1

FP 0

FPU implemented:

 0: No FPU

 1: FPU

This bit is always 1 to indicate that the 20Kc processor
implements a FPU.

R 1

0 6:5 Must be written as zero; returns zero on read. 0 0

63 36 35 0

0 PAddr[35:0]

Table 6-22 LLAddr Register Field Descriptions

Fields

Description
Read/
Write Reset StateName Bit(s)

0 63:36 Must be written as zero; returns zero on read. 0 0

PAddr[35:0] 35:0 Physical address read by the most recent Load Linked
instruction. R Undefined

Table 6-21 Config1 Register Field Descriptions (Continued)

Fields

Description
Read/
Write Reset StateName Bits
MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10 105

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

Chapter 6 Coprocessor Registers

match.
ble bits
ter pair.

atch
te some

e

of the

pecified
value
ld
TheWatchLoregister specifies the base virtual address and the type of reference (instruction fetch, load, store) to
Software may determine which enables are supported by a particular Watch register pair by setting all three ena
and reading them back to see which ones were actually set. The 20Kc processor supports all three in the regis

WatchLo Register Format

6.2.19 WatchHi Register (CP0 Register 19)

TheWatchLo andWatchHi registers together provide the interface to a watchpoint debug facility that initiates a w
exception if an instruction or data access matches the address specified in the registers. As such, they duplica
functions of the EJTAG debug solution. Watch exceptions are taken only if the EXL and ERL bits are zero in theStatus
register. If either bit is a one, the WP bit is set in theCause register, and the watch exception is deferred until both th
EXL and ERL bits are zero.

The 20Kc processor implements one pair of WatchLo and WatchHi registers, referencing them via the select field
MTC0/MFC0 and DMTC0/DMFC0 instructions. Software may determine that there is at least one pair ofWatchLoand
WatchHi registers implemented via the WR bit of theConfig1 register. If the M bit is one in theWatchHi register
reference with a select field of ‘n’, anotherWatchHi/WatchLopair are implemented with a select field of ‘n+1’. The 20Kc
processor implements only oneWatchHi/WatchLo pair.

TheWatchHiregister contains information that qualifies the virtual address specified in theWatchLoregister: an ASID,
a G(lobal) bit, and an optional address mask. If the G bit is 1, any virtual address reference that matches the s
address will cause a watch exception. If the G bit is a 0, only those virtual address references for which the ASID
in theWatchHiregister matches the ASID value in theEntryHi register cause a watch exception. The optional mask fie
provides address masking to qualify the address specified inWatchLo.

WatchHi Register Format

63 3 2 1 0

VAddr I R W

Table 6-23 WatchLo Register Field Descriptions

Fields

Description
Read/
Write Reset StateName Bits

VAddr 63:3
The virtual address to match. Note that this is a doubleword
address, since bits [2:0] are used to control the type of
match.

R/W Undefined

I 2 If this bit is set, watch exceptions are enabled for
instruction fetches that match the address. R/W Undefined

R 1 If this bit is set, watch exceptions are enabled for loads that
match the address. R/W Undefined

W 0 If this bit is set, watch exceptions are enabled for stores that
match the address. R/W Undefined

31 30 29 24 23 16 15 12 11 3 2 0

M G 0 ASID 0 MASK 0
106 MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

6.2 CP0 Registers

. This
erating

seful

ture in

ss

ified

s to
6.2.20 XContext Register (CP0 Register 20)

TheXContext register is a read/write register containing a pointer to an entry in the page table entry (PTE) array
array is an operating system data structure that stores virtual-to-physical translations. During a TLB miss, the op
system loads the TLB with the missing translation from the PTE array. TheXContext register is primarily intended for
use with the XTLB Refill handler, but is also loaded by hardware on a TLB Refill. However, it is unlikely to be u
to software in the TLB Refill Handler. TheXContext register duplicates some of the information provided in the
BadVAddrregister, but is organized in such a way that the operating system can directly reference a 16-byte struc
memory that describes the mapping.

A TLB exception (TLB Refill, XTLB Refill, TLB Invalid, or TLB Modified) causes bits [63:62] of the virtual addre
to be written into the R field and bits [39:13] of the virtual address to be written into the BadVPN2 field of theXContext
register. The PTEBase field is written and used by the operating system.

The BadVPN2 field of theContextregister is not defined after an address error exception and this field can be mod
by hardware during the address error exception sequence.

The PTEBase fields of theContextandXContextregisters do not share storage so software can write different value
these fields.

XContext Register Format

Table 6-24 WatchHi Register Field Descriptions

Fields

Description
Read/
Write Reset StateName Bit(s)

M 31

If this bit is one, another pair ofWatchHi/WatchLo
registers is implemented at an MTC0 or MFC0 select field
value of 1.

In the 20Kc processor, this bit is always zero to indicate
that only one pair orWatchHi/WatchLo registers is
implemented.

R 0

G 30

If this bit is one, any address that matches that specified in
theWatchLoregister causes a watch exception. If this bit
is zero, the ASID field of theWatchHiregister must match
the ASID field of theEntryHi register to cause a watch
exception.

R/W Undefined

0 29:24 Must be written as zero; returns zero on read. 0 0

ASID 23:16 ASID value which is required to match that in theEntryHi
register if the G bit is zero in theWatchHi register. R/W Undefined

0 15:12 Must be written as zero; returns zero on read. 0 0

Mask 11:3

Bit mask that qualifies the address in theWatchLo
register. Any bit in this field that is a set inhibits the
corresponding address bit from participating in the
address match.

Software can determine how many mask bits are
implemented by writing ones in this field and then reading
back the result.

R/W Undefined

0 2:0 Must be written as zero; returns zero on read. 0 0

63 33 32 31 30 4 3 0

PTEBase R BadVPN2 (VA39..13) 0
MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10 107

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

Chapter 6 Coprocessor Registers

ug
ad only

already

fields
ug

 below:

des

 e.g.
6.2.21 Debug Register (CP0 Register 23)

The Debug register is used to control the debug exception and provide information about the cause of the deb
exception and when re-entering at the debug exception vector due to a normal exception in debug mode. The re
information bits are updated every time the debug exception is taken or when a normal exception is taken when
in debug mode.

Only the DM bit and the EJTAGver field are valid when read from non-debug mode; the value of all other bits and
is UNPREDICTABLE. Operation of the processor is UNDEFINED if the Debug register is written from non-deb
mode.

Some of the bits and fields are only updated on debug exceptions and/or exceptions in debug mode, as shown

• DSS, DBp, DDBL, DDBS, DIB, DINT are updated on both debug exceptions and on exceptions in debug mo

• DExcCode is updated on exceptions in debug mode, and is undefined after a debug exception

• Halt and Doze are updated on a debug exception, and is undefined after an exception in debug mode

• DBD is updated on both debug and on exceptions in debug modes

All bits and fields are undefined when read from normal mode, except those explicitly described to be defined,
EJTAGver and DM.

Debug Register Format

Table 6-25 XContext Register Field Descriptions

Field

Description
Read/
Write

Reset
StateName Bits

PTEBase 63:33

This field is for use by the operating system and
is normally written with a value that allows the
operating system to use theContextRegister as
a pointer into the current PTE array in memory

R/W Unspecified

R 32:31

TheRegion field contains bits 63:62 of the
virtual address.

00 = xuseg

01 = xsseg: supervisor address region.

10 = Reserved

11= xkseg

R Unspecified

BadVPN2 30:4

TheBad Virtual Page Number/2 field is written
by hardware on a TLB exception. It contains
bits VA[39:13] of the virtual address that
caused the exception.

R Unspecified

0 3:0 Must be written as zero; returns zero on read. 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18

DBD DM DCR LSNM Doze Halt CountDM IBusEP MCheckP CacheEP DBusEP IEXI DDBSImpr DDBLImpr

17 15 14 10 9 8 7 6 5 4 3 2 1 0

EJTAGVer DExcCode NoSSt SSt 0 DINT DIB DDBS DDBL DBp DSS
108 MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

6.2 CP0 Registers
Table 6-26 Debug Register Field Descriptions

Fields

Description
Read/
Write ResetMnemonic Bit(s)

DBD 31

Indicates whether the last debug exception or exception in debug
mode, occurred in a branch delay slot:

0: Not in delay slot

1: In delay slot

R Undefined

DM 30

Indicates that the processor is operating in debug mode:

0: Processor is operating in non-debug mode

1: Processor is operating in debug mode

R 0

NoDCR 29

Indicates whether the dseg memory segment is present.

0: dseg is present

1: No dseg present

R 0

LSNM 28

Controls access of load/store between dseg and remain memory:

0: Load/stores in dseg address range goes to dseg

1: Load/stores in dseg address range goes to remain memory

R/W 0

Doze 27

Indicates that the processor was low power mode when a debug
exception occurred:

0: Processor not in low power mode when debug exception occurred

1: Processor in low power mode when debug exception occurred

R Undefined

Halt 26

Indicates that the internal system bus clock was stopped when the
debug exception occurred:

0: Internal system bus clock stopped

1: Internal system bus clock running

R Undefined

CountDM 25

Indicates the Count register behavior in debug mode.

Encoding of the bit is:

0: Count register stopped in debug mode

1: Count register is running in debug mode

R 1

IBusEP 24

Instruction fetch Bus Error exception Pending. Set when an
instruction fetch bus error event occurs or if a 1 is written to the bit
by software. Cleared when a Bus Error exception on instruction
fetch is taken by the processor. If IBusEP is set when IEXI is
cleared, a Bus Error exception on an instruction fetch is taken by the
processor and the IBusEP bit is cleared.

R/W1 0

MCheckP 23 Unused in 20Kc processor R 0

CacheEP 22

Indicates if a Cache Error is pending. Set when a cache error event
occurs, or if a 1 is written to the bit by software. Cleared when a
Cache Error exception is taken by the processor. If CacheEP is set
when IEXI is cleared, a Cache Error exception is taken by the
processor and the CacheEP bit is cleared.

In debug mode, a Cache Error exception applies to a Debug Mode
Cache Error exception.

R/W1 0
MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10 109

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

Chapter 6 Coprocessor Registers
DBusEP 21

Data access Bus Error exception Pending. Set when a data access
bus error event occurs, or if a 1 is written to the bit by software.
Cleared when a Bus Error exception on a data access is taken by the
processor. If DBusEP is set when IEXI is cleared, a Bus Error
exception on a data access is taken by the processor and the DBusEP
bit is cleared.

R/W1 0

IEXI 20

Imprecise Error eXception Inhibit controls exceptions taken due to
imprecise error indications. Set when the processor takes a debug
exception or another exception in debug mode. Cleared by
execution of the DERET instruction. This bit can be modified by
debug mode software.

When this bit is set, the imprecise error exceptions generated by a
bus error on instruction fetch or data access, cache error, or machine
check, are inhibited and deferred until the bit is cleared.

R/W 0

DDBSImpr 19

Indicates that a Debug Data Break Store Imprecise exception on a
store was the cause of the debug exception, or that an imprecise data
hardware break on a store was indicated after another debug
exception occurred. Cleared on exception in Debug Mode.

0: No imprecise match of data hardware breakpoint on a store

1: Imprecise match of data hardware breakpoint on a store

R Undefined

DDBLImpr 18

Indicates that a Debug Data Break Load Imprecise exception on a
load was the cause of the debug exception, or that an imprecise data
hardware break on a load was indicated after another debug
exception occurred. Cleared on exception in Debug Mode.

0: No imprecise match of data hardware breakpoint on a load

1: Imprecise match of data hardware breakpoint on a load

R Undefined

EJTAGVer 17:15

EJTAG version.

0: Versions 1 and 2.0

1: Version 2.5

2: Version 2.6

3-7: Reserved

R 2

DExcCode 14:10

Indicates the cause of the latest exception in debug mode. The field
is encoded as the Exc Code field in theCause register for those
normal exceptions that may occur in debug mode.

Value is undefined after a debug exception.

R Undefined

NoSSt 9

Indicates whether the single-step feature controlled by the SSt bit is
available.

0: Single-step feature available

1: Single-step feature not available

R 0

SSt 8

Controls if debug single step exception is enabled:

0: No debug single step exception enabled

1: Debug single step exception enabled

R/W 0

0 7:6 Reserved. Must be written as zero; returns zero on read. 0 0

Table 6-26 Debug Register Field Descriptions (Continued)

Fields

Description
Read/
Write ResetMnemonic Bit(s)
110 MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

6.2 CP0 Registers

ing
6.2.22 Debug Exception Program Counter Register (CP0 Register 24)

The Debug Exception Program Counter (DEPC) register is a read/write register that contains the address at which
processing resumes after a debug exception or debug mode exception has been serviced.

For precise debug and debug mode precise exceptions, theDEPC contains either:

• The virtual address of the instruction that was the direct cause of the debug exception, or

• The virtual address of the immediately preceding branch or jump instruction, when the debug exception caus
instruction is in a branch delay slot, and the Debug Branch Delay (BDB) bit in theDebug register is set.

For imprecise debug exceptions (debug interrupt) and imprecise exceptions in Debug Mode, theDEPC contains the
virtual address of the instruction where execution should resume after the debug handler code is executed.

Debug Exception Program Counter Register Format

DINT 5

Indicates that a debug interrupt exception occurred. Cleared on
exception in debug mode.

0: No debug interrupt exception

1: Debug interrupt exception

R Undefined

DIB 4

Indicates that a debug instruction break exception occurred. Cleared
on exception in debug mode.

0: No debug instruction exception

1: Debug instruction exception

R Undefined

DDBS 3

Indicates that a debug data break exception occurred on a store.
Cleared on exception in debug mode.

0: No debug data exception on a store

1: Debug instruction exception on a store

R Undefined

DDBL 2

Indicates that a debug data break exception occurred on a load.
Cleared on exception in debug mode.

0: No debug data exception on a load

1: Debug instruction exception on a load

R Undefined

DBp 1

Indicates that a debug software breakpoint exception occurred.
Cleared on exception in debug mode.

0: No debug software breakpoint exception

1: Debug software breakpoint exception

R Undefined

DSS 0

Indicates that a debug single step exception occurred. Cleared on
exception in debug mode.

0: No debug single step exception

1: Debug single step exception

R Undefined

63 0

DEPC

Table 6-26 Debug Register Field Descriptions (Continued)

Fields

Description
Read/
Write ResetMnemonic Bit(s)
MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10 111

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

Chapter 6 Coprocessor Registers

for use
 a 32-bit

re
of the
mbined
6.2.23 Performance Counter Registers (CP0 Register 25, Selects 0, 1)

The 20Kc processor supports a single performance counter that provides the capability to count events or cycles
in performance analysis. Each performance counter consists of a pair of registers: a 32-bit control register and
counter register. The performance counter uses select 0 for control and select 1 for the counter.

The performance counter can be configured to count events or cycles under a specified set of conditions that a
determined by the control register. The counter register increments once for each enabled event. When bit 31
counter register is one (the counter overflows), the performance counter optionally requests an interrupt that is co
with hardware interrupt 5 to set interrupt bit IP(7) in theCause register. Counting continues after a counter register
overflows, whether or not an interrupt is requested or taken.

Performance Counter Control Register Format

Table 6-27 Debug Register Formats

Fields

Description
Read/
Write ResetMnemonic Bit(s)

DEPC 63:0

TheDEPC register is updated with the virtual address of
the instruction that caused the debug exception. If the
instruction is in the branch delay slot, the virtual address
of the immediately preceding branch or jump instruction
is placed in this register.

Execution of the DERET instruction causes a jump to the
address in theDEPC.

 R/W Undefined

31 30 11 10 5 4 3 2 1 0

M 0 Event IE U S K EXL

Table 6-28 Performance Counter Control Register Field Descriptions

Fields

Description
Read/
Write Reset StateName Bits

M 31 This bit is cleared to indicate that the 20Kc processor supports one performance
counter. R 0

0 30:11 Must be written as zero; returns zero on read 0 0
112 MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

6.2 CP0 Registers
Event 10:5

Selects the event to be counted by the corresponding Counter Register. The
encodings for this field are as follows:

0x00 - counts CPU cycles

0x01 - counts dispatched/issued instructions

0x02 - counts fetch groups entering CPU execution pipes

0x03 - counts instructions completed in FPU datapath (computational
instructions only)

0x04 - counts taken TLB refill exceptions

0x05 - counts branches that mispredicted before completing execution

0x06 - counts branches that completed execution

0x07 - counts taken Joint-TLB exceptions

0x08 - counts replays due to load-dependent speculative dispatch

0x09 - counts instruction requests from the IFU to the BIU

0x0A - counts taken FPU exceptions

0x0B - counts the total number of replays due to:

• LSU requested replays

• Load-dependent speculative dispatch

• FPU exception prediction

0x0C - counts JR instructions that mispredicted using the Return Prediction
Stack (RPS)

0x0D - counts JR instruction that completed execution

0x0E - counts LSU requested replays

0x0F - counts instruction that completed execution (with or without exception)

0x10 - 0x3F - Reserved

R/W Unspecified

IE 4

Interrupt Enable. Enables the interrupt request when the corresponding counter
overflows (bit 31 of the counter is one).

Note that this bit simply enables the interrupt request. The actual interrupt is
still gated by the normal interrupt masks and enable in theStatus register.

 0: Performance counter interrupt disabled

 1: Performance counter interrupt enabled

R/W 0

U 3

Enables event counting in User Mode.

 0: Disable event counting in User Mode

 1: Enable event counting in User Mode

R/W Unspecified

S 2

Enables event counting in Supervisor Mode.

0: Disable event counting in Supervisor Mode

1: Enable event counting in Supervisor Mode

R/W Unspecified

Table 6-28 Performance Counter Control Register Field Descriptions (Continued)

Fields

Description
Read/
Write Reset StateName Bits
MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10 113

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

Chapter 6 Coprocessor Registers

egister
uction
The Counter Register associated with each performance counter increments once for each enabled event.Table 6-29
describes the Performance Counter Register fields.

Performance Counter Register Format

6.2.24 DErrCtl Register (CP0 Register 26, Select 0)

TheDErrCtl register provides a diagnostic interface with the error detection mechanism in the data cache. This r
is used to read and write parity to and from the primary data cache data arrays. An Index Load Tag cache instr
causes the even byte parity of the accessed doubleword of data, retrieved into theDDataHi andDDataLoregisters, to be
written into the PA field of theDErrCtl register. If the CE bit in theStatusregister is set, a store hit will use the value in
the PA field instead of the computed data parity to write into the cache.

DErrCtl Register Format

K 1

Enables event counting in Kernel Mode. Unlike the usual definition of Kernel
Mode, this bit enables event counting only when the EXL and ERL bits in the
Status register are zero.

 0: Disable event counting in Kernel Mode

 1: Enable event counting in Kernel Mode

R/W Unspecified

EXL 0

Enables event counting when the EXL bit in theStatus register is one and the
ERL bit in theStatus register is zero.

 0: Disable event counting while EXL = 1, ERL = 0

 1: Enable event counting while EXL = 1, ERL = 0

Counting is never enabled when the ERL bit in theStatus register is one.

R/W Unspecified

31 0

Event Count

Table 6-29 Performance Counter Register Field Descriptions

Fields

Description
Read/
Write Reset StateName Bits

Event
Count 31:0

Increments once for each event that is enabled by the
corresponding Control Register. When bit 31 is one, an
interrupt request is made if the IE bit in the Control
Register is one.

R/W Unspecified

31 8 7 0

0 PA

Table 6-28 Performance Counter Control Register Field Descriptions (Continued)

Fields

Description
Read/
Write Reset StateName Bits
114 MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

6.2 CP0 Registers

. This
uction
6.2.25 IErrCtl Register (CP0 Register 26, Select 1)

TheIErrCtl register provides a diagnostic interface with the error detection mechanism in the instruction cache
register is used only to read parity from the primary instruction cache data arrays. An Index Load Tag cache instr
causes the even parity of the accessed doubleword of data, retrieved into theIDataHi andIDataLoregisters, to be written
into the PA field of theIErrCtl register.

IErrCtl Register Format

6.2.26 CacheErr Register (CP0 Register 27, Select 0)

The CacheErr register provides an interface with the cache error detection logic.

CacheErr Register Format

Table 6-30 DErrCtl Register Field Descriptions

Fields

Description
Read/
Write Reset StateName Bits

0 31:8 Must be written as zero. 0 Unspecified

PA 7:0

Data parity. An Index Load Tag cache instruction
computes the even byte parity of the accessed
doubleword of data and writes it in this field. Bits 0-7
correspond to bytes 0-7 of the data.

If CE in theStatusregister is 1, a store forces the value
in this field into the cache as data parity. If CE is 0, the
data parity will be computed.

R/W Unspecified

31 8 7 6 0

0 PA 0

Table 6-31 IErrCtl Register Field Descriptions

Fields

Description
Read/
Write Reset StateName Bits

0 31:8 Must be written as zero. 0 Unspecified

PA 7

Data parity. An Index Load Tag cache instruction
computes the even parity of the accessed doubleword of
data and writes it in this field. Unlike the parity in
DErrCtl, this field is a single bit for the entire
doubleword.

R Unspecified

0 6:0 Must be written as zero. 0 Unspecified

31 30 29 28 27 26 25 24 23 22 15 14 13 12 5 4 0

ER ED ET ES EE EB 0 EW 0 WA IN 0
MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10 115

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

Chapter 6 Coprocessor Registers

c

6.2.27 ITagLo Register (CP0 Register 28, Select 0)

TheITagLo andITagHi registers act as the interface to the cache virtual tag array and are intended for diagnosti
operation only. The Index Store Tag and Index Load Tag operations of the CACHE instruction use theITagLoandITagHi
registers as the source or sink of tag information, respectively.

Table 6-32 CacheErr Register Field Descriptions

Fields

Description
Read/
Write Reset StateName Bits

ER 31:30

Indicate the type of reference that encountered an error:

 00: Instruction Cache

 01: Prefetch Buffer

 10: Data Cache

 11: Fill Store Buffer

R Unspecified

ED 29

Indicates a data error in ICache, PFB, DCache, or FSB:

 0: No data error detected

 1: Data error detected

R Unspecified

ET 28

Indicates a tag error in ICache or DCache:

 0: No tag error detected

 1: Tag error detected

R Unspecified

ES 27

Indicates data error on external request:

 0: No error due to external request

 1: Error due to external request

R Unspecified

EE 26

Indicates a bus parity error:

 0: No bus parity error

 1: Bus parity error

R Unspecified

EB 25

Indicates that an instruction error occurred in addition
to a data error:

 0: No additional instruction error

 1: Additional instruction error

R Unspecified

Reserved 24 Must be written as zero 0 Unspecified

EW 23 Indicates tag error on external request. R Unspecified

Reserved 22:15 Must be written as zero 0 Unspecified

WA 14:13 The cache way at which the error was detected. R Unspecified

IN 12:5 The cache index at which the error was detected. R Unspecified

Reserved 4:0 Must be written as zero 0 Unspecified
116 MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

6.2 CP0 Registers

re

cache.

ded
ITagLo Register Format

6.2.28 IDataLo Register (CP0 Register 28, Select 1)

TheIDataLo andIDataHi registers are read-only registers that act as the interface to the cache data array and a
intended for diagnostic operations only. The Index Load Tag operation of the CACHE instruction reads the
corresponding data values into theIDataLo andIDataHi registers.

IDataLo Register Format

Certain fields of the opcodes fetched from memory are somtimes modified before they are stored in the Instruction
The data in theIDataLo register reflects this modification. The algorithm used for modification is referred to as
"instruction recoding" and is defined below:

• On all shift instructions (i.e. SLL, SRL, SRA, DSLL, DSRL, DSRA, DSLL32, DSRL32, DSRA32, SLLV, SRLV,
SRAV, DSLLV, DSRLV, DSRAV), opcode field 25:21 is swapped with the opcode field 20:16 to form the reco
opcode.

31 8 7 6 5 4 3 1 0

VTagLo PState 0 L F 0 P

Table 6-33 ITagLo Register Field Descriptions

Fields

Description
Read/
Write Reset StateName Bits

VTagLo 31:8 Virtual address bits 36:13. R/W Unspecified

PState 7

State for the cache tag.

 0: Invalid

 1: Valid

R/W Unspecified

Reserved 6 Must be written as zero 0 Undefined

L 5

Lock bit for the Instruction cache tag.

 0: Unlocked

 1: Locked

R/W Unspecified

F 4 Fill bit for the Least Recently Filled (LRF) algorithm. R/W Unspecified

Reserved 3:1 Must be written as zero R 0

P 0 Even parity bit for the cache tag. R/W Unspecified

31 0

DATA

Table 6-34 IDataLo Register Field Descriptions

Fields

Description
Read/
Write Reset StateName Bit(s)

DATA 31:0 Low-order data read from the data array (as opposed to the
tag array) of the Instruction cache. R Undefined
MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10 117

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

Chapter 6 Coprocessor Registers

 1.

ostic

 are
• For all branch instructions, recoded opcode field[14:0] = Program Counter [16:2] + raw opcode field [14:0] +

6.2.29 DTagLo Register (CP0 Register 28, Select 2)

TheDTagLo andDTagHi registers act as the interface to the cache physical tag array and are intended for diagn
operation only. The Index Store Tag and Index Load Tag operations of the CACHE instruction use theDTagLo and
DTagHi registers as the source or sink of tag information, respectively.

Software is allowed to write zeros into theDTagLo andDTagHi registers and then use the Index Store Tag cache
operation to initialize the cache tags to a valid state at power-up.

DTagLo Register Format

6.2.30 DDataLo Register (CP0 Register 28, Select 3)

TheDDataLo andDDataHi registers are read-only registers that act as the interface to the cache data array and
intended for diagnostic operations only. The Index Load Tag operation of the CACHE instruction reads the
corresponding data values into theDDataLo andDDataHi registers.

DDataLo Register Format

31 30 8 7 6 5 4 3 1 0

0 PTagLo PState L F 0 P

Table 6-35 DTagLo Register Field Descriptions

Fields

Description
Read/
Write Reset StateName Bits

Reserved 31 Must be written as zero. R 0

PTagLo 30:8 Physical address bits 35:13. R/W Unspecified

PState 7:6

State for the cache tag.

 0: Invalid

 1: Reserved

 2: Clean Exclusive

 3: Dirty

R/W Unspecified

L 5

Lock bit for the cache tag.

 0: Unlocked

 1: Locked

R/W Unspecified

F 4 Fill bit for the Least Recently Filled (LRF) algorithm. R/W Unspecified

Reserved 3:1 Must be written as zero 0 Unspecified

P 0 Even parity bit for the cache tag. R/W Unspecified

31 0

DATA
118 MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

6.2 CP0 Registers

c

tion

re
6.2.31 ITagHi Register (CP0 Register 29, Select 0)

TheITagLo andITagHi registers act as the interface to the cache virtual tag array and are intended for diagnosti
operation only. The Index Store Tag and Index Load Tag operations of the CACHE instruction use theITagLoandITagHi
registers as the source or sink of tag information, respectively.

Software is allowed to write zeros into theITagLoandITagHi registers and then use the Index Store Tag cache opera
to initialize the cache tags to a valid state at power-up.

ITagHi Register Format

6.2.32 IDataHi Register (CP0 Register 29, Select 1)

TheIDataLo andIDataHi registers are read-only registers that act as the interface to the cache data array and a
intended for diagnostic operations only. The Index Load Tag operation of the CACHE instruction reads the
corresponding data values into theIDataLo andIDataHi registers.

IDataHi Register Format

Table 6-36 DDataLo Register Field Description

Fields

Description
Read/
Write

Reset
StateName Bit(s)

DATA 31:0 Low-order data read from the data cache. R Undefined

31 18 17 16 15 8 7 3 2 0

0 BE G ASID SEG TG

Table 6-37 ITagHi Register Field Descriptions

Fields

Description
Read/
Write Reset StateName Bits

Reserved 31:18 Must be written as zero 0 Unspecified

BE 17

Indicates endianness of cache line:

0: little endian

1: big endian

R/W Unspecified

G 16 Global bit in cache tag. R/W Unspecified

ASID 15:8 ASID to store to or read from the cache tag. R/W Unspecified

SEG 7:3 Segment bits. Virtual address bits 63:58. R/W Unspecified

TG 2:0 Virtual tag. Virtual address bits 39:37. R/W Unspecified

31 0

DATA
MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10 119

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

Chapter 6 Coprocessor Registers

ostic

d, and

 are
The data stored in this register is also recoded using the same instruction recoding algorithm defined for theIDataLo
register.

6.2.33 DTagHi Register (CP0 Register 29, Select 2)

TheDTagLo andDTagHi registers act as the interface to the cache physical tag array and are intended for diagn
operation only. The Index Store Tag and Index Load Tag operations of the CACHE instruction use theDTagLo and
DTagHi registers as the source or sink of tag information, respectively. Software writes to this register are ignore
reads always return zero.

DTagHi Register Format

6.2.34 DDataHi Register (CP0 Register 29, Select 3)

TheDDataLo andDDataHi registers are read-only registers that act as the interface to the cache data array and
intended for diagnostic operations only. The Index Load Tag operation of the CACHE instruction reads the
corresponding data values into theDDataLo andDDataHi registers.

DDataHi Register Format

Table 6-38 IDataHi Register Field Descriptions

Fields

Description
Read/
Write Reset StateName Bit(s)

DATA 31:0 High-order data read from the data array (as opposed to the
tag array) of the Instruction cache. R Undefined

31 0

0

Table 6-39 DTagHI Register Field Descriptions

Fields

Description
Read/
Write Reset StateName Bits

0 31:0 Ignored on write. Returns zero when read. R Unspecified

31 0

DATA

Table 6-40 DDataHi Register Field Description

Fields

Description
Read/
Write Reset StateName Bit(s)

DATA 31:0 High-order data read from the data cache. R Undefined
120 MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

6.3 CP0 Hazards

ram

error.

n is in

. This
he context
ception

rocessor,
number

ble to a
6.2.35 ErrorEPC (CP0 Register 30, Select 0)

TheErrorEPC register is a read-write register, similar to theEPC register, except thatErrorEPC is used on error
exceptions. All bits of theErrorEPC register are significant and must be writable. It is also used to store the prog
counter on Reset, Soft Reset, and non-maskable interrupt (NMI) exceptions.

TheErrorEPC register contains the virtual address at which instruction processing can resume after servicing an
This address can be:

• The virtual address of the instruction that caused the exception

• The virtual address of the immediately preceding branch or jump instruction when the error causing instructio
a branch delay slot

Unlike theEPC register, there is no corresponding branch delay slot indication for theErrorEPC register.

ErrorEPC Register Format

6.2.36 DESAVE Register (CP0 Register 31)

The Debug Exception Save (DESAVE) register is a read/write register that functions as a simple memory location
register is used by the debug exception handler to save one of the GPRs that is then used to save the rest of t
to a pre-determined memory area (such as in the EJTAG Probe). This register allows the safe debugging of ex
handlers and other types of code where the existence of a valid stack for context saving cannot be assumed.

DESAVE Register Format

6.3 CP0 Hazards

Because resources controlled via Coprocessor 0 affect the operation of various pipeline stages of a MIPS64 p
manipulation of these resources may produce results that are not detectable by subsequent instructions for some
of execution cycles. When no hardware interlock exists between one instruction that causes an effect that is visi
second instruction, aCP0 hazard exists.

63 0

ErrorEPC

Table 6-41 ErrorEPC Register Field Description

Fields

Description
Read/
Write Reset StateName Bit(s)

ErrorEPC 63:0 Error Exception Program Counter R/W Undefined

63 0

DESAVE

Table 6-42 DESAVE Register Description

Bit(s) Mnemonic Description R/W Reset

63:0 DESAVE Debug exception save contents. R/W Undefined
MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10 121

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

Chapter 6 Coprocessor Registers

ispatch

ring

ET

ut this

 below,
The 20Kc processor implements hardware interlocks to resolve all functional CP0 instruction hazards.Table 6-43shows
hazards which are not handled by the interlocks. The duration of the hazard is indicated by either the number of d
cycles (number of SSNOPs) or until the specified instruction. A hazard exists regarding when theLLAddr register is
updated after a LL instruction. However, this register is for diagnostic purposes only and serves no function du
normal operation. A deferred watch exception also causes a hazard because the WP bit is not set in theCause register
immediately. Also, changes toEntryHiASID andStatusare not guaranteed to affect the instruction fetches until an ER
instruction is executed.

6.4 CP1 Register Summary

Table 6-44lists the CP1 floating-point registers in numerical order. The individual registers are described througho
section.

6.5 CP1 Registers

The CP1 registers provide the interface between the ISA and the floating-point unit. Each register is discussed
with the registers presented in numerical order, first by register number, then by select field number.

Table 6-43 CP0 Hazard Spacing

Producer → Consumer Hazard On Duration

LL → MFC0 LLAddr 4

deferred watch exception → MFC0 CauseWP 2

EntryHiASID → instruction fetches EntryHiASID ERET

Status → instruction fetches Status ERET

Watch register write → instruction taking exception Watch ERET

TLBW → instruction fetches TLB ERET

Compare → instruction not seeing timer interrupt Timer interrupt 4

CACHE instruction → instruction fetches Instruction cache ERET

Table 6-44 CP1 Registers

Register
Number Register Name Function

0 FIR Floating-Point Implementation register. Contains information
that identified the FPU.

25 FCCR Floating-Point Condition Codes register.

26 FEXR Floating-Point Exceptions register.

28 FENR Floating-Point Enables register.

31 FCSR Floating-Point Control and Status register.
122 MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

6.5 CP1 Registers

t state of

e

For each register described below, field descriptions include the read/write properties of the field, and the rese
the field. For the read/write properties of the field, the notation listed inTable 6-45 is used:

6.5.1 Floating-Point Implementation Register (CP1 Register 0)

The Floating-Point Implementation Register (FIR) is a 32-bit read-only register that contains information identifying th
capabilities of the floating-point unit, the floating-point processor identification, and the revision level of the
floating-point unit.Table 6-46 describes theFIR register fields.

Floating-Point Implementation Register Format

Table 6-45 CP1 Register Field Types

Read/Write
Notation Hardware Interpretation Software Interpretation

R/W

A field in which all bits are readable and writable by software and, potentially, by hardware.

Hardware updates of this field are visible by software read. Software updates of this field are
visible by hardware read.

If the reset state of this field is “Undefined,” either software or hardware must initialize the value
before the first read will return a predictable value. This should not be confused with the formal
definition of UNDEFINED behavior.

R

A field that is either static or is updated only by
hardware.

If the Reset State of this field is either “0” or
“Preset”, hardware initializes this field to zero
or to the appropriate state, respectively, on
powerup.

If the Reset State of this field is “Undefined”,
hardware updates this field only under those
conditions specified in the description of the
field.

A field to which the value written by software
is ignored by hardware. Software may write
any value to this field without affecting
hardware behavior. Software reads of this field
return the last value updated by hardware.

If the Reset State of this field is “Undefined,”
software reads of this field result in an
UNPREDICTABLE value except after a
hardware update done under the conditions
specified in the description of the field.

0 A field that hardware does not update, and for
which hardware can assume a zero value.

A field to which the value written by software
must be zero. Software writes of non-zero
values to this field may result in UNDEFINED
behavior of the hardware. Software reads of
this field return zero as long as all previous
software writes are zero.

If the Reset State of this field is “Undefined,”
software must write this field with zero before
it is guaranteed to read as zero.

31 20 19 18 17 16 15 8 7 0

0 3D PS D S ProcessorID Revision

Table 6-46 FIR Register Field Descriptions

Fields

Description
Read/
Write Reset StateName Bits

0 31:20 Reserved for future use; reads as zero 0 0
MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10 123

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

Chapter 6 Coprocessor Registers

n

6.5.2 Floating-Point Condition Codes Register (CP1 Register 25)

The Floating-Point Condition Codes Register (FCCR) is an alternative way to read and write the floating-point conditio
code values that also appear inFCSR. UnlikeFCSR, all eight FCC bits are contiguous inFCCR. Table 6-47 describes
theFCCR register fields.

Floating-Point Condition Codes Register Format

3D 19

Indicates that the MIPS-3D ASE is implemented:

 0: MIPS-3D not implemented

 1: MIPS-3D implemented

This bit is always 1 to indicate that MIPS-3D is
implemented.

R 1

PS 18

Indicates that the paired-single (PS) floating-point data
type and instructions are implemented:

 0: PS floating not implemented
 1: PS floating implemented

This bit is always 1 to indicate that paired-single
floating-point data types are implemented.

R 1

D 17

Indicates that the double-precision (D) floating-point data
type and instructions are implemented:

 0: D floating not implemented
 1: D floating implemented

This bit is always 1 to indicate that double-precision
floating-point data types are implemented.

R 1

S 16

Indicates that the single-precision (S) floating-point data
type and instructions are implemented:

 0: S floating not implemented
 1: S floating implemented

This bit is always 1 to indicate that single-precision
floating-point data types are implemented.

R 1

Processor
ID 15:8 Identifies the floating-point processor. This value should

normally match the corresponding field of thePRId CP0. R 0x82

Revision 7:0
Revision number of the floating-point unit. Allows
software to distinguish between one revision and another
of the same floating-point processor type.

R Preset

31 8 7 0

0 FCC

Table 6-46 FIR Register Field Descriptions

Fields

Description
Read/
Write Reset StateName Bits
124 MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

6.5 CP1 Registers

that

hat
6.5.3 Floating-Point Exceptions Register (CP1 Register 26)

The Floating-Point Exceptions Register (FEXR) is an alternative way to read and write the Cause and Flags fields
also appear inFCSR. Table 6-48 describes theFEXR register fields.

Floating-Point Exceptions Register Format

6.5.4 Floating-Point Enables Register (CP1 Register 28)

The Floating-Point Enables Register (FENR) is an alternative way to read and write the Enables, FS, and RM fields t
also appear inFCSR. Table 6-49 describes theFENR register fields.

Floating-Point Exceptions Register Format

Table 6-47 FCCR Register Field Descriptions

Fields

Description
Read/
Write Reset StateName Bits

0 31:8 Must be written as zero; returns zero on read 0 0

FCC 7:0 Floating-point condition code. Refer to the description
of this field in theFCSR register. R/W Undefined

31 18 17 12 11 7 6 2 1 0

0 Cause 0 Flags 0

E V Z O U I V Z O U I

Table 6-48 FEXR Register Field Descriptions

Fields

Description
Read/
Write Reset StateName Bits

0 31:18,
11:7, 1:0 Must be written as zero; returns zero on read 0 0

Cause 17:12 Cause bits. Refer to the description of this field in theFCSRregister. R/W Undefined

Flags 6:2 Flags bits. Refer to the description of this field in theFCSRregister. R/W Undefined

31 12 11 7 6 3 2 1 0

0 Enables 0 FS RM

V Z O U I

Table 6-49 FENR Register Field Descriptions

Fields

Description
Read/
Write Reset StateName Bits

0 31:12,
6:3 Must be written as zero; returns zero on read 0 0
MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10 125

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

Chapter 6 Coprocessor Registers

he
6.5.5 Floating-Point Control and Status Register (CP1 Register 31)

The Floating-Point Control and Status Register (FCSR) is a 32-bit register that controls the operation of the
floating-point unit. Access toFCSR is not privileged; it can be read or written by any program that has access to t
floating-point unit (via the coprocessor enables in theStatus register).Table 6-50 describes theFCSR register fields.

Floating-Point Control and Status Register Format

Enables 11:7 Enable bits. Refer to the description of this field in the
FCSR register. R/W Undefined

FS 2 Flush to Zero bit. Refer to the description of this field in
theFCSR register. R/W Undefined

RM 1:0 Rounding mode. Refer to the description of this field in the
FCSR register. R/W Undefined

31 25 24 23 22 21 20 18 17 12 11 7 6 2 1 0

FCC FS FCC FO FN 0 Cause Enables Flags RM

7 6 5 4 3 2 1 0 E V Z O U I V Z O U I V Z O U I

Table 6-50 FCSR Register Field Descriptions

Fields

Description
Read/
Write Reset StateName Bit

FCC 31:25,
23

Floating-point condition codes. These bits record the
result of floating-point compares and are tested for
floating-point conditional branches and conditional
moves. The FCC bit to use is specified in the compare,
branch, or conditional move instruction. For backward
compatibility with previous MIPS ISAs, the FCC bits are
separated into two non-contiguous fields.

R/W Undefined

FS 24

Flush to Zero. When FS is one, denormalized results are
flushed to zero instead of causing an Unimplemented
Operation exception. It is implementation dependent
whether denormalized operand values are flushed to zero
before the operation is carried out.

R/W Undefined

FO 22

MADD Flush Override. This mode bit is only defined for
the 20Kc FPU. When FO is set, a denorm intermediate
result of any MADD instruction is not flushed nor
denormalized according to the FS bit. The intermediate
result maintains an internal normalized format to improve
accuracy.

R/W Undefined

FN 21

Flush to nearest. When FN is set, denormalized results are
flushed to either zero or min-norm depending on whether
the denorm result is closer to zero of closer to min-norm,
instead of causing an Unimplemented Operation
exception.

R/W Undefined

0 20:18 Reserved for future use. Must be written as zero; returns
zero on read. 0 0

Table 6-49 FENR Register Field Descriptions

Fields

Description
Read/
Write Reset StateName Bits
126 MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

6.5 CP1 Registers
Cause 17:12

Cause bits. These bits indicate the exception conditions
that arise during execution of an FPU arithmetic
instruction. A bit is set to 1 if the corresponding exception
condition arises during the execution of an instruction and
is set to 0 otherwise. By reading the registers, the
exception condition caused by the preceding FPU
arithmetic instruction can be determined. Refer toSection
6.2.12, "Cause Register (CP0 Register 13, Select 0)" for
descriptions of the Cause bits.

R/W Undefined

Enables 11:7

Enable bits. These bits control whether or not a trap is
taken when an IEEE exception condition occurs for any of
the five conditions. The trap occurs when both an Enable
bit and the corresponding Cause bit are set either during
an FPU arithmetic operation or by moving a value to
FCSR or one of its alternative representations. Note that
Cause bit E has no corresponding Enable bit; the
non-IEEE Unimplemented Operation exception is defined
by MIPS as always enabled.

R/W Undefined

Flags 6:2

Flag bits. This field shows any exception conditions that
have occurred for completed instructions since the flag
was last reset by software.

When a FPU arithmetic operation raises an IEEE
exception condition that does not result in a
Floating-Point Exception (i.e., the Enable bit was off), the
corresponding bit(s) in the Flag field are set, while the
others remain unchanged. Arithmetic operations that
result in a Floating-Point Exception (i.e., the Enable bit
was on) do not update the Flag bits.

This field is never reset by hardware and must be
explicitly reset by software.

R/W Undefined

RM 1:0
Rounding mode. This field indicates the rounding mode
used for most floating-point operations (some operations
use a specific rounding mode).

R/W Undefined

Table 6-50 FCSR Register Field Descriptions (Continued)

Fields

Description
Read/
Write Reset StateName Bit
MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10 127

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

Chapter 6 Coprocessor Registers
128 MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

 be
e cycle.

tually
he tag

dian

locked
cache.

cked or
Chapter 7

Caches

The 20Kc processor contains a 32-Kbyte Instruction Cache and a 32-KByte Data Cache. Each cache can each
accessed in a single processor cycle. The two caches are distinct, and each cache can be accessed in the sam

This chapter contains the following sections.

• Section 7.1, "Instruction Cache"

• Section 7.2, "Data Cache"

• Section 7.3, "Cache Protocol"

• Section 7.4, "Cache Attributes"

Table 7-1 lists the instruction and data cache attributes.

7.1 Instruction Cache

The instruction cache is an on-chip memory block of 32 KBytes. The Instruction cache is virtually indexed and vir
tagged. This allow the cache access to proceed without waiting for the virtual-to-physical address translation. T
contains 32 bits of virtual address, 1 valid bit, 1 lock bit, 1 LRF replacement bit, 1 Global bit, 8 ASID bits, 1 Big En
bit, and 1 parity bit.

The 20Kc processor supports instruction cache-locking. Cache locking allows critical code or data segments to be
into the cache on a “per-line” basis, enabling the system programmer to maximize the efficiency of the system

The cache locking function is always enabled on all instruction cache entries. Entries can then be marked as lo
unlocked on a per entry basis using the CACHE instruction.

Table 7-1 Instruction and Data Cache Attributes

Parameter Instruction Data

Size 32 KBytes 32 KBytes

Number of Cache Sets 256 256

Lines Per Set (Associativity) 4-way set associative 4-way set associative

Line Size 32 bytes 32 bytes

Read Unit 16 bytes 8 bytes

Write Unit 32 bytes 32 bytes

Write Policy N/A write-back

Access Mode Virtually indexed/Virtually tagged Physically indexed/Physically tagged

Cache Locking per line per line
MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10 129

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

Chapter 7 Caches

re of.

), any
zed with
e JTB,

nt
 I-Cache

he
Cache

t the

ion was

of the
his will
ed that

sically
dified

tical to
ents can

nlocked
7.1.1 Memory Management implications of the Virtual I-Cache

There are certain implications of a virtual I-Cache that anyone developing software for the 20Kc should be awa

7.1.1.1 Virtual I-Cache synchronization with Joint Translation Buffer (JTB)

Since the I-Cache contains translation information similar to that contained in the Joint Translation Buffer (JTB
programmer manipulating the contents of the JTB must take the necessary steps to keep the I-Cache synchroni
the JTB. This is not done automatically by the hardware. In order to keep the virtual I-Cache synchronized with th
software is required to meet the following two constraints:

• If a virtual-to-physical address mapping is changed such that the same virtual address now points to a differe
physical address, and the ASID is unchanged after this operation, then the 20Kc processor requires that the
be flushed to eliminate any old mappings.

• If the ASIDs are incremented such that they rollover and get reused, then the 20Kc processor requires that t
I-Cache be flushed so that stale Virtual Address mappings corresponding to a former life of an ASID in the I-
are eliminated.

7.1.1.2 Virtual I-Cache hits

The JTB lookup is bypassed on I-Cache hits. As a result it is possible that a cache line exists in the I-Cache bu
corresponding translation in the JTB is replaced. Software should therefore never make the assumption that an
instruction that hits in the I-Cache has a corresponding translation currently present in the JTB.

One such example of an incorrect assumption would be the following sequence of events:

• The 20Kc dispatches an instruction. The instruction was present in the ICache but its corresponding translat
replaced in the JTB prior to the fetching of this instruction from the ICache.

• This instruction when dispatched by the 20Kc processor takes an exception.

• The exception handler attempts to examine the opcode of the instruction that took the exception via a Load
instruction (e.g.LW). Since the Data Cache (DCache) is physically indexed and physically tagged, any lookup
DCache is preceded by a lookup of the JTB. Since the corresponding entry has been removed from the JTB, t
result in a TLB Refill exception. The exception handler was unprepared for this exception, because it assum
the instruction would not take a TLB Refill instruction.

7.2 Data Cache

The data cache is an on-chip memory block of up to 32 KBytes. The data cache is physically indexed and phy
tagged. The tag contains 23 bits of physical address, 1 valid bit, 1 lock bit, 1 LRF replacement bit, 1 dirty or mo
bit, and 1 parity bit.

In addition to instruction cache locking, the 20Kc processor also supports a data cache locking mechanism iden
the instruction cache. Critical data segments to be locked into the cache on a “per-line” basis. The locked cont
be updated on a store hit, but cannot be selected for replacement on a store miss.

The cache locking function is always enabled on all data cache entries. Entries can then be marked as locked or u
on a per entry basis using the CACHE instruction.
130 MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

7.3 Cache Protocol

can be
e two

esult in

.

7.3 Cache Protocol

The 20Kc processor implements the three state MEI (Modified-Exclusive-Invalid). A cache line in the data cache
in one of the three states: Modified, Exclusive or Invalid. A cache line in the Instruction cache can be in one of th
states i.e: Exclusive or Invalid.

Figure 7-1 shows the instruction cache state diagram.Figure 7-2 shows the data cache state diagram.

Figure 7-1 Instruction Cache State Diagram

Figure 7-2 Data Cache State Diagram

7.4 Cache Attributes

The 20Kc processor supports the following different cache attributes.

• Uncached

• Uncached Accelerated

• Non-Coherent Write Back

• Coherent Write Back

• Non-Coherent, write through, no write-allocate

7.4.1 Uncached

Addresses in a memory area indicated as uncached are never read from the cache. When reads to this area r
fetches from memory, the read data is not refilled into the cache.

Stores to such addresses are written directly to main memory, without changing the contents of the data cache

Invalid Exclusive
Cache Miss for Read

Read Hit

Invalid Exclusive

Cache Miss for Read

Read HitInvalidate or Intervention Received

Modified
Write Hit

Read Hit

Invalidate or Intervention Received

Cache Miss for Write
MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10 131

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

Chapter 7 Caches

o this area

irements

Endian

celerated

treated

fer is
 this
ith the

required
uential".
devices.
ite. This

ed.

ffer.

ssociated
ing can
ll cause
s
 with it in
 or
This protocol is applicable to both instruction and data references.

7.4.2 Uncached Accelerated

Addresses in a memory area indicated as uncached accelerated are not read from the data cache. When reads t
result in fetches from memory, the read data is not refilled into the cache.

Stores to such addresses are gathered in the uncached accelerated write buffer, providing they meet certain requ
described later. They are then sent out on the bus as a gathered write. For a description of the write buffer, refer toChapter
8, “Bus Interface Unit.” This is intended as a mechanism to improve the write bandwidth on uncached data.

This protocol is applicable only for data references. Uncached Accelerated Gathering is not supported in Reverse
mode. Reverse Endian mode is enabled for user mode accesses when Status.RE is set to 1.

7.4.2.1 Gathering Mechanism for Uncached Accelerated Stores

Uncached accelerated gathering is supported for word and doubleword stores only. Gathering of uncached ac
stores starts on cache-line aligned addresses (32- byte aligned addresses).

Uncached accelerated word or doubleword stores that do not meet the conditions required to start gathering are
like regular uncached stores.

Once an Uncached Accelerated Store meets the requirements needed to start gathering, a 32-byte gather buf
reserved for this store. All subsequent uncached accelerated word or doubleword stores write sequentially into
buffer, independent of the address associated with these stores. The uncached accelerated buffer is tagged w
address of the first store. Even though the address of subsequent stores is not checked, a software programmer is
to use appropriate addresses for all subsequent stores. An appropriate address would be either "identical" or "seq
Indentical addresses imply all the stores use the same address. This may be the appropriate mode for certain
Sequential addresses imply that the address is incremented after every store, based on the granularity of the wr
would be the mode of addressing required for memory.

An uncached accelerated buffer can be explicitly flushed under program control via the following mechanisms:

• An uncached accelerated byte store: This store is treated as a NOP and causes the gather buffer to be flush

• A Sync instruction: The SYNC instruction causes the gather buffer to be flushed.

An uncached accelerated buffer is implicitly flushed under the following conditions.

• The last word in the entry being gathered is written.

• TLB hit on virtual address of a load instruction matches original virtual address associated with the gather bu

• An exception occurs.

When an uncached accelerated buffer is flushed, the address sent out on the system interface is the address a
with the first uncached accelerated store. It is important to use "identical" or "sequential" addressing since gather
be interrupted by asynchronous exceptions such as interrupts. As described in the previous paragraph, this wi
flushing of the buffer. When the store instruction that was interrupted resumes execution after the asynchronou
exception is handled, it will be treated as an uncached store and needs to have the correct address associated
order to ensure correct operation. The 20Kc does not check to see if the program has violated the "sequential"
"identical" addressing mode. That responsibility lies with the programmer.
132 MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

7.4 Cache Attributes

ated stores
pect to

rd
it may

d store
hey are

ust not

e in the
ontains
e refill

resident,
ned from
ck to

contains
er

e can

t

contains
master

e can

e in the
ontains
re the
Caveats:

• Any uncached stores and any uncached loads to unrelated addresses that occur between uncached acceler
that are part of a gather sequence go out of order. The uncached accelerated stores are not ordered with res
these load or stores.

• The only constraint imposed on the gathering is that doubleword stores are only allowed to write to doublewo
aligned locations in the buffer. For example, if uncached accelerated gathering starts with a Store Word (SW),
not be followed by a Store Double (SD).

• Uncached accelerated stores that are halfword stores (SH), or unaligned stores (SWL, SWR, SDL, SDR) an
conditional (SC and SCD) are not intended to be used. In the present implementation of the 20Kc processor, t
treated as NOPS. However, this behavior is not guaranteed for subsequent implementations. Programmers m
use these stores and expect a specific behavior.

7.4.3 Non-Coherent Write-Back

Loads and instruction fetches first search the cache, reading main memory only if the desired data does not resid
cache. Data returned from main memory is written into the caches. If the line that is being replaced in the cache c
data that is more recent than main memory (i.e. in the modified state), that line is written out to memory, before th
occurs.

In the case of data store operations, the cache is first searched to see if the target address is cache resident. If it is
the cache contents are updated. If the line is not present in the cache, main memory is accessed. The data retur
main memory is then written into the cache. Again if the line being replaced is in the modified state, it is written ba
memory before the line is refilled. The store is completed once the refill from memory is completed.

When a cache miss triggers a memory access to this space, the corresponding request on the System Interface
a qualifier indicating that the address is intended to be non-coherent. This qualifier can be used in a multimast
environment to determine the appropriate course of action.

This protocol is applicable only for both instruction and data references. However, a line in the instruction cach
never be in the modified state, hence there is never any writeback.

7.4.4 Coherent Exclusive Write-Back

The sequence of events for this cache attribute are identical to those in the preceding section on Non-Coheren
Writeback, with the following exception.

When a cache miss triggers a memory access to this space, the corresponding request on the System Interface
a qualifier indicating that the address is intended to be Coherent Exclusive. This qualifier can be used in a multi-
environment to determine the appropriate course of action.

This protocol is applicable only for both instruction and data references. However, a line in the instruction cach
never be in the modified state, hence there is never any writeback.

7.4.5 Non-Coherent, Write-Through with No Write-Allocate

Loads and instruction fetches first search the cache, reading main memory only if the desired data does not resid
cache. Data returned from main memory is written into the caches. If the line that is being replaced in the cache c
data that is more recent than main memory (that is, in the modified state), that line is written out to memory, befo
refill occurs.
MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10 133

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

Chapter 7 Caches

resident,
n directly

s. The

given
In the case of data store operations, the cache is first searched to see if the target address is cache resident. If it is
the cache contents are updated. If the line is not present in the cache, the cache is bypassed and the data is writte
to main memory.

This protocol is applicable only for data references.

7.4.6 Encoding

The above cache protocols can be selected by one of the two following mechanisms:

• For mapped addresses they are controlled on a per-page basis by appropriately setting the “C” field of theEntryLo0
andEntryLo1 registers before a TLBWI or TLBWR operation.

• For unmapped addresses in the xkphys segment, they are determined by the CCA field of the virtual addres
CCA field corresponds to bits [61:59] of the virtual address.

• For unmapped address in the kseg0 segment, they are determined by the “K0” field of theConfig Register. The K0
field corresponds to bits [2:0] of theConfig Register.

The encoding used for the three bit “Cache Coherency Attribute” is identical in all of the above three cases and is
in Table 6-6 on page 88.
134 MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

en the
second
ed in
ocument,
troller.

cessor
troller

 and

d bus.

and

e
interface,
an SOC
sources.

and
Chapter 8

Bus Interface Unit

The MIPS 20Kc System interface is a high-performance interface that provides a high-speed connection betwe
MIPS 20Kc processor and a single SOC controller. This interface is also referred to as the MIPS GigaBytes per
(MGB™) bus protocol. While the new bus protocol is fundamentally different from the SysAD style interfaces us
MIPS processors, such as the R4000 and R5000, some features of SysAD have been retained. Throughout this d
the device communicating with the 20Kc processor through the System interface is referred to as the SOC con

The 20Kc System interface contains a 32-bit unidirectional multiplexed address and data bus driven by the pro
(EB_PrcAD[31:0]), and a separate 64-bit unidirectional multiplexed address and data bus driven by the SOC con
(EB_SysAD[63:0]). TheEB_SysAD bus can also be configured in 32-bit mode to minimize pin count.

The 20Kc System interface allows the processor to access external resources needed to satisfy cache misses
uncached operations, while permitting an SOC controller to access some of the processor internal resources.

This chapter contains the following sections:

• Section 8.1, "20Kc System Interface Features"

• Section 8.2, "Bus Encoding (64-bit EB_SysAD Mode)"

• Section 8.3, "Processor and External Request Protocols (64-bit EB_SysAD Mode)"

• Section 8.4, "Bus Encoding (32-bit EB_SysAD Mode)"

• Section 8.5, "Processor and External Request Protocols (32-bit EB_SysAD Mode)"

• Section 8.6, "20Kc Signal Descriptions"

8.1 20Kc System Interface Features

The following is a brief summary of features:

• Support for both processor and external requests and responses.

• Multiplexed unidirectional 32-bit address and data bus driven by the processor with associated 7-bit comman

• Multiplexed unidirectional 64-bit address/data bus driven by the SOC controller with associated 14-bit comm
bus. This bus also contains a 32-bit option for pin-constrained applications.

• Support for multiple outstanding split transactions and out-of-order data return.

• Credit-based flow control.

8.1.1 Processor and External Requests

There are two broad categories of requests:processor requests andexternal requests. When a system event occurs, th
processor issues either a single request or a series of requests—called processor requests—through the System
to access an external resource and service the event. For this to work, the 20Kc processor must be connected to
controller that is compatible with the 20Kc System interface protocol and can coordinate accesses to system re

The SOC controller only performs intervention or invalidate external requests. The SOC controller can access
manipulate data residing in the processor cache through these types of requests.
MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10 135

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

Chapter 8 Bus Interface Unit

nse can be
ty lines
from the

quiring

ts. The

.

Figure 8-1 Processor and SOC Controller Requests

There are two types of responses on the System interface: data responses and state responses. A data respo
returned by either the SOC controller (for processor read requests) or the processor (for interventions that hit dir
in the data cache). A state response is only returned by the processor for Intervention and Invalidate requests
SOC controller. State responses return the state of the targeted cache line.Figure 8-2 illustrates all the possible
request/response combinations.

Figure 8-2 Request/Response Combinations

8.1.2 Multiplexed Unidirectional 32-bit Processor Address/Data Bus

The 20Kc System interface contains a 32-bit unidirectional multiplexed address/data bus,EB_PrcAD[31:0], that is
always driven by the processor. The minimum transfer size is 8 bits. The bus supports transfer sizes of 64 bits, re
two cycles per data transfer onEB_PrcAD[31:0]. TheEB_PrcAD[31:0] address/data bus is parity protected by the
EB_PrcADP[3:0] bus which provides even parity. Each parity bit onEB_PrcADP[3:0] corresponds to one byte on
EB_PrcAD[31:0]. In addition, a seven-bit command bus,EB_PrcCmd[6:0], is driven at the same time as
EB_PrcAD[31:0] and provides information on the type of operation.

8.1.3 Multiplexed Unidirectional 64-bit SOC Controller Address/Data Bus

The 20Kc System interface contains a 64-bit unidirectional multiplexed address/data bus,EB_SysAD[63:0], that is
always driven by the SOC controller. The minimum transfer size is 8 bits. The bus supports transfer sizes of 64 bi
EB_SysAD[63:0]address/data bus is parity protected by theEB_SysADP[7:0]bus which provides even parity. Each
parity bit onEB_SysADP[7:0]corresponds to one byte onEB_SysAD[63:0]. In addition, a 14-bit command bus,
EB_SysCmd[13:0], is driven at the same time asEB_SysAD[63:0] and provides information on the type of operation
TheEB_SysAD bus can also be configured in 32-bit mode for pin-constrained applications.

Processor SOC Controller

Processor Requests
• Read
• Write External Requests

• Intervention
• Invalidate

Read Request

Data Response Write Request
Write Data

Intervention/Invalidate

State Response
Intervention

State & Data Response

SOC
Controller

SOC
Controller

SOC
Controller

SOC
Controller

CPU

CPU

CPU

CPU
136 MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

8.1 20Kc System Interface Features

uest to
ests while
ns.

o their
gged by

k to the
s are

a
 With
reserved

ntroller
d a write
C
ents by

r to

urces in
n return,
e there is

f flow
 16 write
8.1.4 Support for Multiple Outstanding Split Transactions

The 20Kc System interface supports split transactions, which do not require the bus requestor to wait for one req
be completed before issuing a new one. In addition, the bus requestor also can receive and process new requ
waiting for the completion of a prior request. The 20Kc processor can issue up to six outstanding read operatio

Because multiple requests can be pending on the System interface, a means to identify the data replies back t
corresponding requests is needed to support out-of-order return. To satisfy this requirement, each request is ta
the processor when it is issued. When the data response is ready, the SOC controller sends the same tag bac
processor with the data. Requests from the SOC controller to the 20Kc processor and the corresponding replie
tagged in a similar way.

The transaction tag format is given inFigure 8-3. It is made up of two components: a 4-bit transaction ID field and
1-bit device ID field. The SOC controller is assigned Device ID 1, while the 20Kc core is assigned Device ID 0.
this configuration, transaction tags 0-15 are reserved for processor requests, while transaction tags 16-31 are
for SOC controller requests. The transaction tag is part of the command bus as described later.

Figure 8-3 Transaction Tags

8.1.5 Credit-Based Flow Control

Flow control on the 20Kc System interface is based on credits and occurs on both processor initiated and SOC co
initiated transactions. On the processor side there are two counters: a read resource counter (RdRscCount) an
resource counter (WrRscCount). Each of these counters reflect the available read or write resources in the SO
controller. When the processor issues a read operation to the SOC controller, the RdRscCount counter decrem
one internally. The SOC controller responds to the transaction by asserting theEB_SysRdCreditsignal for one clock at
some point before, during, or after the transaction. The assertion of this signal causes the RdRscCount counte
increment.

In a credit-based flow control scheme, the processor knows at any given time the amount and type of free reso
the SOC controller. Therefore the processor does not issue more requests than the SOC controller can handle. I
the SOC controller must accept processor requests for which there exists corresponding free resources, becaus
no means of retrying a request once it has been issued by the processor.

All read and write credit counters default to zero on power-up because the processor does not know the level o
control resources that the SOC controller implements. The 20Kc processor supports up to 16 read credits and
credits. During the initialization phase (after reset) the SOC controller asserts theEB_SysRdCreditandEB_SysWrCredit
signals between 1 and 16 clocks each, depending on the number of resources implemented.Figure 8-4shows an example
of how the RdRscCount and WrRscCount counters are programmed during initialization by asserting the
EB_SysRdCredit andEB_SysWrCredit signals, respectively.

Device ID Transaction ID

= 0

= 1SOC controller

Processor

Transaction Tag
MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10 137

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

Chapter 8 Bus Interface Unit

 and a
e SOC
e, while
ue to the
g write

a counter
ompletes

by the

us, the
nt read

serts

ents by

on by
rtion
a write
Figure 8-4 Credit Counter Programming

8.1.5.1 SOC Controller Resource Control

As shown inFigure 8-6, the processor maintains two separate counters: a read resource counter (RdRscCount)
write resource counter (WrRscCount). Each of these counters reflect the available read or write resources in th
controller. The RdRscCount tells the processor the number of Read requests which the SOC controller can handl
the WrRscCount indicates the number of write requests (including their associated data) the processor can iss
SOC controller. In this example, the SOC controller supports four outstanding read operations and two outstandin
operations.

Figure 8-5 SOC Controller Resource Control

Whenever the processor issues a Read or a Write request, it also decrements the corresponding counter. Once
reaches zero, the processor stops issuing any more requests. During a read operation, once the SOC controller c
a request and frees up a resource, it asserts theEB_SysRdCredit signal for one clock. This causes the RdRscCount to
increment by one. Each additional cycle theEB_SysRdCredit is asserted represents a new credit, so in effect the
EB_SysRdCreditsignal acts as an increment-enable for the RdRscCount counter. Note that once a credit is issued
SOC controller, it cannot be revoked later on.

In Figure 8-5, the SOC controller has asserted theEB_SysRdCreditsignal four times during initialization, indicating that
it supports up to four outstanding read operations. When the processor initiates the initial read operation on the b
counter decrements to 3, indicating that three more read operations can occur prior to the time data for the curre
cycle is returned. At some point before, during, or after completion of the first read cycle the SOC controller as
EB_SysRdCredit. The assertion of this signal causes the RdRscCount counter to increment from 3 back to 4.

Similarly, when the processor issues a write operation to the SOC controller, the WrRscCount counter decrem
one internally. InFigure 8-5, the SOC controller has asserted theEB_SysWrCreditsignal two times during initialization,
indicating that it supports up to two outstanding write operations. The SOC controller responds to the transacti
asserting theEB_SysWrCreditsignal at some point before, during, or after completion of the transaction. The asse
of this signal causes the WrRscCount counter to increment by one. For example, when the processor initiates

SI_ClkIn

EB_SysRdCredit

EB_SysWrCredit

EB_PrcCredit

Reset Phase
1 – 16
clocks

EB_SysRdCredit

EB_SysWrCredit

Processor SOC controller

RdRscCount

WrRscCount

4

2

+

+

138 MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

8.2 Bus Encoding (64-bit EB_SysAD Mode)

by the
ta
nt

cessor

r to the
ts the
ing

ects of
col.

sts
a write
. The
ent any

 write
the
uest
er
portant
20Kc
operation on the bus, the counter decrements to one, indicating that one more write operation can be initiated
processor prior to the SOC controller finishing the current write cycle. At some point during or after the write da
transfer is complete, the SOC controller assertsEB_SysWrCredit. The assertion of this signal causes the WrRscCou
counter to increment from 1 back to 2.

8.1.5.2 Processor Resource Control

Flow control from the processor to the SOC controller works in the same way. This is required since both the pro
and the SOC controller can issue requests to each other. However, as seen inFigure 8-6, there is only one type of
processor resource, one counter in the SOC controller to keep track of it, and one credit signal from the processo
SOC controller (EB_PrcCredit) acting as an increment-enable to the PrcRscCount counter. The processor asser
EB_PrcCredit signal two times during initialization to indicate to the SOC controller that it supports two outstand
operations.

Figure 8-6 Processor Resource Control

8.1.5.3 Flow Control Implications on SOC controller design.

A designer of an SOC controller for the 20Kc processor needs to be cognizant of the following 20Kc specific asp
the flow control scheme. These are aspects particular to the 20Kc processor and not to the more general proto

• The Bus Interface Unit (BIU) within the 20Kc processor maintains a single shared queue for processor reque
which is maintained in FIFO order. If a read request is stalled at the head of the queue for lack of read credits,
request that is behind the read request will be unable to get out on the bus even if write credits are available
same comment applies to a write request stalled at the head of the queue for lack of write credits. It will prev
subsequent read requests in the queue from being dispatched.

• Intervention Responses from the processor require a resource within the 20Kc processor that is shared with
requests. This resource is the internal writeback buffer. It is possible that the writeback buffer is full because
processor does not have the write credits required to send write requests out on the bus. An Intervention req
received at such a point can only make progress once a write credit is received, to free up the writeback buff
resource. Since write requests can be stalled in the BIU behind read requests waiting for read credits, it is im
that the SOC controller provide the 20Kc processor at least 1 read credit and 1 write credit while expecting the
processor to respond to an Intervention Request.

8.2 Bus Encoding (64-bit EB_SysAD Mode)

This section contains theEB_PrcCmd[6:0] andEB_SysCmd[13:0] bus encoding in 64-bitEB_SysAD mode.

8.2.1 PrcCmd/SysCmd Bus Encoding (Command Cycles)

In 64-bit EB_SysAD mode, the 20Kc System interface contains a 7-bitEB_PrcCmd bus and a 14-bitEB_SysCmd bus
that contain request and identification information for the transaction.EB_PrcCmd[6:0]is driven by the processor.
EB_SysCmd[13:0] is driven by the SOC controller. The encoding for each bus is identical.

EB_PrcCredit

Processor SOC Controller

PrcRscCount2

+

MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10 139

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

Chapter 8 Bus Interface Unit

where
r side,
first on

address

e

d

Figure 8-7shows the command bus format for the processor and SOC controller. In 64-bit EB_SysAD bus mode,
the SOC controller is 64 bits, the command information is transferred as a single 14-bit value. On the processo
where the bus width is 32 bits, the command is transferred in two cycles. The lower seven bits are transferred
EB_PrcCmd[6:0], followed by the upper seven bit in the following clock.

There are two types of command transfers. These transfers determine the format of the command bus. During the
phase of a transaction, the ‘command’ format is transferred as shown inFigure 8-7.

Figure 8-7 Command Bus Formats During a Command Cycle

8.2.1.1 Processor and SOC Controller Request Encoding

Bits [3:1] of theEB_PrcCmd bus and bits [3:1] of theEB_SysCmd bus comprise the RQ[2:0] field, which encodes th
type of processor and SOC controller requests as shown inTable 8-1.

8.2.1.2 Processor Read Request Encoding

A processor read request occurs when theEB_PrcCmd[3:1]field contains a value of 0b000. Bits [13:9] of the comman
bus are loaded into the RQS[4:0] field.

Table 8-1 Request Encoding

RQ[2:0] Request Type

0 Read request (Processor Only)

1 Reserved

2 Write Request (Processor Only)

3 Reserved

4 Invalidate Request (SOC Only)

5 Reserved

6 Intervention Request (SOC Only)

7 Reserved

7-bit Half Width Command
EB_PrcCmd[6:0] (First Cycle)

7-bit Half Width Command
EB_PrcCmd[6:0] (Second Cycle)

RQ[2:0] D

0134

ID[2:0]

6

7

ID[4:3]

8

RQS[4:0]

913

D = Data Identifier: 0 = command cycle, 1 = data cycle
RQ = Type of transaction being requested
ID = 5-bit transaction tag
RQS = Contains information specific to the transaction

RQ[2:0] DRQS[4:0]

0134913
14-bit Full Width Command

ID[4:0]

8

EB_SysCmd[13:0]
140 MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

8.2 Bus Encoding (64-bit EB_SysAD Mode)

 field,
e

read
equests
ber of

s

Processor Read Request Type Encoding

The RQS[4:3] bits encode the type of processor read request as shown inTable 8-2. This information is useful in
handling the associated external response.

Processor Block Read Transfer Size Encoding

Block read requests are used to transfer 32 bytes of data in a single transaction. The lower two bits of the RQS
RQS[1:0], indicate the size of the block read transfer as shown inTable 8-3. Note that during a block read request, th
RQS[2] bit is reserved and is not used in the encoding process.

Processor Double/Single/Partial Word Read Encoding

The 20Kc System interface allows for the transfer of doubleword, word, and partial word data types. A partial word
requests the transfer of less than 32 bits of data. A single-word read requests 32 bits of data. A doubleword read r
64 bits of data. During these types of requests, the lower three bits of the RQS field, RQS[2:0], encode the num
bytes valid for the transaction as shown inTable 8-4. Refer toTable 8-14for all valid combinations of address and acces
size.

Table 8-2 Encoding of RQS[4:3] for Processor Read Requests

RQS[4:3] Request Type

0 Reserved

1 Coherent Block Read - Exclusive

2 Noncoherent Block Read

3 Double/Single/Partial Word Read

Table 8-3 Encoding of RQS[1:0] for Processor Block Read Requests

RQS[1:0] Block Transfer Size

0 Reserved

1 8 words

2 Reserved

3 Reserved

Table 8-4 Encoding of RQS[2:0] for Processor D/S/P Word Read Requests

RQS[2:0] Number of Bytes Valid

0 1 byte valid

1 2 bytes valid

2 3 bytes valid

3 4 bytes valid

4 5 bytes valid

5 6 bytes valid

6 7 bytes valid

7 8 bytes valid
MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10 141

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

Chapter 8 Bus Interface Unit

the

the type

 field,

write
rite
e the
8.2.1.3 Processor Write Request Encoding

The upper five bits of the command bus, RQS[4:0], contain information specific to the transaction indicated by
RQ[2:0] field.

Processor Write Request Type Encoding

During the address cycle of processor write requests the upper two bits of the command bus, RQS[4:3], contains
of write operation as shown inTable 8-5. This information is useful in handling the associated write data.

Processor Block Write Transfer Size Encoding

Block write requests are used to transfer 32 bytes of data in a single transaction. The lower two bits of the RQS
RQS[1:0], indicate the size of the block write transfer as shown inTable 8-6. Note that during a block write request the
RQS[2] bit is reserved and is not used in the encoding process.

Processor Double/Single/Partial Word Write Request Encoding

The 20Kc System interface allows for the transfer of doubleword, word, and partial word data types. A partial word
requests the transfer of less than 32 bits of data. A single-word write requests 32 bits of data. A doubleword w
requests 64 bits of data. During these types of requests, the lower three bits of the RQS field, RQS[2:0], encod
number of bytes valid for the transaction as shown inTable 8-7. Refer toTable 8-14for all valid combinations of address
and access size.

Table 8-5 Encoding of RQS[4:3] for Processor Write Requests

RQS[4:3] Write Cause Indication

0 Uncached Accelerated Block Write

1 Reserved

2 Block Write

3 Double/Single/Partial Word Write

Table 8-6 Encoding of RQS[1:0] for Processor Block Write Requests

RQS[1:0] Block Transfer Size

0 Reserved

1 8 words

2 Reserved

3 Reserved

Table 8-7 Encoding of RQS[2:0] for Processor D/S/P Word Write Requests

RQS[2:0] Number of Bytes Valid

0 1 byte valid

1 2 bytes valid

2 3 bytes valid

3 4 bytes valid

4 5 bytes valid
142 MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

8.2 Bus Encoding (64-bit EB_SysAD Mode)

of valid
s is
ed
ress.

quest,

ts
e

Processor Uncached Accelerated Block Write Request Encoding

During the address cycle of processor uncached accelerated block write requests, RQS[2:0] contain the number
words in the block transfer as shown inTable 8-8. This value is needed because the transfer size on the system bu
always eight words regardless of the actual number of valid words contained within the block. Note that uncach
accelerated writes are always block-aligned, and the first valid word is the one located at the block-aligned add

8.2.1.4 External Invalidation Request Encoding

An external invalidation request is selected when the RQ[2:0] field contains a value of 0b100. During this type of re
the RQS[1:0] field is reserved.

8.2.1.5 External Intervention Request Encoding

An external intervention request is selected when the RQ[2:0] field contains a value of 0b110. The RQS[1:0] bi
determine the type of intervention request as shown inTable 8-9. Note that during an intervention request, RQS[4:2] ar
reserved and are not used in the encoding process.

5 6 bytes valid

6 7 bytes valid

7 8 bytes valid

Table 8-8 Encoding of RQS[2:0] for a Processor Uncached Accelerated Block Write Request

RQS[2:0] Number of Valid Words

0 1 word valid

1 2 words valid

2 3 words valid

3 4 words valid

4 5 words valid

5 6 words valid

6 7 words valid

7 8 words valid

Table 8-9 Encoding of RQS[1:0] for External Intervention Requests

RQS[1:0] Type of Intervention

0 Reserved

1 Change Cache Line State to Invalid

2 Reserved

3 Reserved

Table 8-7 Encoding of RQS[2:0] for Processor D/S/P Word Write Requests

RQS[2:0] Number of Bytes Valid
MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10 143

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

Chapter 8 Bus Interface Unit

time as
er seven

and bus.

uring
8.2.2 PrcCmd/SysCmd Bus Encoding (Data Cycles)

The 20Kc System interface contains a 7-bitEB_PrcCmd bus and a 14-bitEB_SysCmd bus that contain request and
identification information for the transaction.EB_PrcCmd[6:0]is driven by the processor.EB_SysCmd[13:0]is driven
by the SOC controller. The encoding for each bus is identical.

Figure 8-8below shows the command bus format for the processor and SOC controller. In 64-bitEB_SysADbus mode,
where the SOC controller is 64 bits, the command information is transferred as a single 14-bit value at the same
address. On the processor side where the bus width is 32 bits, the command is transferred in two cycles. The low
bits are transferred first onEB_PrcCmd[6:0], followed by the upper seven bits in the following clock.

There are two types of command transfers (data and address). These transfers determine the format of the comm
During the data phase of a transaction the ‘data’ format is transferred on the command bus as shown inFigure 8-8.

Figure 8-8 Command Bus Formats During a Data Cycle

8.2.2.1 Cache Line State Encoding

The C[1:0] field is loaded with bits [2:1] of the command bus. The C[1:0] field indicates the state of the cache line d
a state response, which occurs in response to an external request.Table 8-10 shows the encoding of the C[1:0] field.

8.2.2.2 Data Status Bit Encoding

The DS[4:0] field, represented by bits [13:9] of the command bus as shown inFigure 8-8above, indicates the status of
data on the bus at any given point in the transaction. The encoding for this field is shown inTable 8-11.

Table 8-10 Encoding of the C[1:0] Field

C[1:0] Cache State

0 Invalid

1 Reserved

2 Clean Exclusive

3 Dirty Exclusive

Table 8-11 Encoding of the DS[4:0] Field

DS[4:0] Name Value Data Status

DS[4] Last Data
1 Last data element

0 Not the last data element

C[1:0] DRDS[4:0]

01234913

14-bit Full Width Command

7-bit Half Width Command
(First Cycle)

7-bit Half Width Command
(Second Cycle)

ID[4:0]

8

C[1:0] DR

01234

ID[2:0]

6

7

ID[4:3]

8
DS[4:0]

913

D = Data Identifier: 0 = command cycle, 1 = data cycle
C = Cache line state
ID = 5-bit transaction tag
DS = contains information specific to the transaction

R = Reserved
144 MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

8.3 Processor and External Request Protocols (64-bit EB_SysAD Mode)

eptions
ysical
signalled
ust be

 such as

processor
troller,

ich

ess some
on-block

re used
ached

r

If DS[2] is asserted on the SysCmd bus during a read, the processor takes a Bus Error exception. (Bus Error exc
typically are raised by the SOC controller for events such as bus time-outs, local bus parity errors, and invalid ph
memory addresses or access types.) Block read requests must complete and are not aborted by Bus Error being
in this way. Note that during a write, the SOC controller does not drive the SysCmd bus, so equivalent errors m
signalled by the SOC controller via an interrupt exception. Also note that DS[2] serves other purposes as well,
reporting parity errors on data that is being flushed out of the cache.

8.3 Processor and External Request Protocols (64-bit EB_SysAD Mode)

This section discusses the data transfer protocols associated with processor and external requests. The 20Kc
supports two bus combinations for the processor and the SOC controller: 32-bit processor with 32-bit SOC con
and 32-bit processor with 64-bit SOC controller. This section focuses on 64-bit SOC mode. Refer toSection 8.5,
"Processor and External Request Protocols (32-bit EB_SysAD Mode)" for more information on 32-bit SOC mode.

The processor drives theEB_PrcADbus and the SOC controller drives theEB_SysADbus. The highest performance is
achieved using a 64-bitEB_SysADbus for the SOC controller. The 32-bit SOC mode is provided for applications wh
may be pin-constrained.

8.3.1 Processor Requests

A processor request is a single request or a series of requests through the 20Kc System interface used to acc
external resource. The 20Kc System interface supports both read and write processor requests in block and n
modes.

The 20Kc System interface supports the following types of requests:

• Processor read requests

• Processor write requests

Block reads are used for cache line fills and are triggered by instruction or data cache misses. Non-block reads a
for uncached load or fetch accesses. Block writes can result because of writebacks from the data cache or unc
accelerated operations. Non-block write requests are issued when the processor executes uncached stores, o
write-through stores.

DS[3] Resp Data
1 Data is response data

0 Data is not response data

DS[2] Err Data
1 Data is erroneous

0 Data is error free

DS[1] Check Enable
1 Check data and parity

0 Do not check data and parity

DS[0] Reserved

Table 8-11 Encoding of the DS[4:0] Field

DS[4:0] Name Value Data Status
MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10 145

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

Chapter 8 Bus Interface Unit

requested
ng the
e SOC
the SOC

ted by the

troller

 be byte,
enoted

 of 3.
3 to 2)
unter to

along

ing,
1
ents by
8.3.1.1 Processor Read Requests

When a processor issues a read request, the SOC controller must access the specified resource and return the
data. A processor read request can be split from the return of the requested data by the SOC controller, allowi
processor to place another request on the bus prior to the time that data from the first request is returned by th
controller. A processor read request is completed after the last word of response data has been received from
controller.

The 20Kc System interface defines three types of read operations that can be initiated by the processor:

• Coherent Block Read Exclusive

• Noncoherent Block Read

• Double/Single/Partial Word Read

The processor issues a Read request when there are available read resources in the SOC controller as indica
value in the RdRscCount counter.

Processor Block Read Requests

Figure 8-9 shows a back-to-back block read operation in 64-bit EB_SysAD mode. In this example the SOC con
supports three outstanding read operations. The processor drives address and command information onEB_PrcADand
EB_PrcCmd, indicated by Adr 1 onEB_PrcAD. The address driven out on theEB_PrcAD is not block aligned, but
corresponds to the actual address of the instruction that triggered the read request. This address can therefore
word, halfword or doubleword aligned. In the next clock, the processor drives the second address onto the bus, d
by Adr 2 onEB_PrcAD. Prior to the first address being driven the internal RdRscCount counter contains a value
The driving of the first address onto the bus causes the internal RdRscCount counter to decrement by one (from
as shown. The driving of the second address onto the bus in the next clock causes the internal RdRscCount co
decrement by one (from 2 to 1) as shown. Two read cycles are now outstanding on the bus.

At some later point, indicated by the break in the diagram, the SOC controller drives data for the first transaction,
with theEB_SysDataVld signal. The SOC controller continues to driveEB_SysDataVld as long as valid data is on the
bus. However, the 20Kc System interface only requires that theEB_SysRdCreditsignal be asserted for one clock. Note
that the assertion ofEB_SysRdCredithas no timing relationship to the data being driven and can be driven before, dur
or after the transaction. The assertion ofEB_SysRdCredit causes the internal RdRscCount counter to increment by
(from 1 to 2). When the SOC controller drives data for the second transaction, the RdRscCount counter increm
1 (from 2 to 3).
146 MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

8.3 Processor and External Request Protocols (64-bit EB_SysAD Mode)

ddress

driven,
 internal
s in the
are now

action,

second
r to
Figure 8-9 32-bit EB_PrcAD/64-bit EB_SysAD Block Read Protocol

Processor Double/Single/Partial Word Read Requests

Figure 8-10 shows a back-to-back non-block read operation in 64-bit EB_SysAD mode. The processor drives a
and command information onEB_PrcAD andEB_PrcCmd, indicated by Adr 1 onEB_PrcAD. In the next clock, the
processor drives the second address onto the bus, denoted by Adr 2 onEB_PrcAD. In this example the SOC controller
allows up to three outstanding read cycles on the bus at any given time. Therefore, prior to the first address being
the internal RdRscCount counter contains a value of 3. The driving of the first address onto the bus causes the
RdRscCount counter to decrement by one (from 3 to 2) as shown. The driving of the second address onto the bu
next clock causes the internal RdRscCount counter to decrement by one (from 2 to 1) as shown. Two read cycles
outstanding on the bus.

At some later point, indicated by the first break in the diagram, the SOC controller drives data for the first trans
along with theEB_SysDataVld signal. In this example the SOC controller assertsEB_SysRdCredit one clock after the
first data transfer, causing the internal RdRscCount counter to increment by 1 (from 1 to 2). The assertion of the
EB_SysRdCredit occurs five clocks drives after data for the second transaction, causing the RdRscCount counte
increment by 1 (from 2 to 3).

Figure 8-10 32-bit EB_PrcAD/64-bit EB_SysAD Double/Single/Partial Word Read Protocol

SI_ClkIn

EB_PrcCmd[6:0]

EB_PrcVld

RdRscCount 3 13 3 2 2 2 3

EB_SysAD[63:0]

EB_SysVld

Data Data Data Data Data Data Data Data

2 2 22 2 21 211

EB_PrcAD[31:0] Adr 1
31:0

Adr 1
63:32

Adr 2
31:0

2

Adr 2
63:32

Rd 1
6:0

Rd 1
13:7

Rd 2
6:0

Rd 2
13:7

1

EB_SysRdCredit

1 2

EB_SysCmd[13:0]

SI_ClkIn

EB_PrcCmd[6:0]

EB_PrcVld

RdRscCount 3 13 3 2 3 3 32 3 32 2 22 211

EB_ PrcAD[31:0] Adr 1
31:0

Adr 1
63:32

Adr 2
31:0

2

Adr 2
63:32

Rd 1
6:0

Rd 1
13:7

Rd 2
6:0

Rd 2
13:7

1 1

EB_SysAD[63:0]

EB_SysVld

Data Data

2

EB_SysRdCredit

EB_SysCmd[13:0]
MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10 147

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

Chapter 8 Bus Interface Unit

sor write

ined by

time.
ddress
ssertion

ddress

assertion

n the
ue of 2.

2 to 1)

scCount
8.3.1.2 Processor Write Requests

When a processor issues a write request, the specified resource is accessed and the data is written to it. A proces
request is complete after the last word of data has been transmitted to the SOC controller.

The processor issues a Write request when there are write resources available in the SOC controller as determ
the value in the WrRscCount counter.

Processor Block Writes

In Figure 8-11, the processor drives address information onEB_PrcAD[31:0], and command information on
EB_PrcCmd[6:0]. In this example the SOC controller allows two outstanding write cycles on the bus at any given
Therefore, prior to address being driven the internal WrRscCount counter contains a value of 2. The driving of a
onto the bus causes the internal WrRscCount counter to decrement by one (from 2 to 1) as shown. Note that the a
of EB_SysWrCreditby the SOC controller has no timing relationship to the data.EB_SysWrCreditcan be driven before,
during, or after the transaction.

In this example, two write operations are initiated on the bus prior toEB_SysWrCredit being asserted by the SOC
controller. After the first transaction is driven onto the bus the counter decrements from 2 to 1. The driving of a
and data for the second transaction causes the counter to decrement from 1 to 0. The assertion ofEB_SysWrCreditduring
the second transaction causes the WrRscCount counter to increment by 1 (from 0 to 1). Note that the second
of EB_SysWrCredit by the SOC controller is not shown.

Figure 8-11 32-bit EB_PrcAD Block Write Protocol

Processor Double/Single/Partial Word Write Requests

In Figure 8-12, the processor drives address information onEB_PrcADand command information onEB_PrcCmd. Data
is driven in the following clock. In this example, the SOC controller supports up to two outstanding write cycles o
bus at any given time. Therefore, prior to address being driven the internal WrRscCount counter contains a val
The processor drives address onto the bus, causing the internal WrRscCount counter to decrement by one (from
as shown. At some later time, indicated by the break in the timing diagram, the SOC controller assertsEB_SysWrCredit,
indicating that it has accepted the data on the bus. When the processor samples this signal asserted, the WrR
counter is incremented.

SI_ClkIn

EB_PrcCmd[6:0]

WrRscCount 1

EB_PrcAD[31:0]

EB_PrcVld

222 1 1 1 1 11 1 11 1 00 0 00 1 11

Adr 1 Data Data Data Data Data Data DataData
31:0

Adr 1
63:32

Adr 2
31:0

Data Data Data Data Data Data DataDataAdr 2
63:32

Wr 1
6:0

Wr 1
13:7

Wr 2
6:0

Wr 2
13:7

EB_SysWrCredit
148 MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

8.3 Processor and External Request Protocols (64-bit EB_SysAD Mode)

 of valid
 an

al Word

s. Under
 of the

arked

eld

r:

y. At the
Figure 8-12 32-bit EB_PrcAD Double/Single/Partial Word Write Protocol

Processor Uncached Accelerated Block Write Request

During the address cycle of processor uncached accelerated requests, the RQS[2:0] field contains the number
words in the block transfer. The 20Kc System interface allows between 1 to 8 words of data to be transferred in
uncached accelerated transaction. For the encoding of the RQS[2:0] field, refer to Processor Double/Single/Parti
Write Request Encoding.

8.3.2 External Requests

External requests include intervention and invalidate.

Intervention requests require the processor to return the state of the cache line at the specified physical addres
certain conditions related to the state of the cache line and the nature of the intervention request, the contents
primary cache line can be returned. The state of the line is modified by this request.

Invalidate requests specify a cache line, in the primary and secondary caches of the processor, that must be m
invalid.

8.3.2.1 External Intervention Request

The external intervention request is selected when the RQ[2:0] field contains a value of 0b110. The RQS[1:0] fi
determines the type of Intervention request.

The SOC controller issues an intervention when the following conditions are satisfied:

• There is a processor resource to receive the external request.

• The SOC controller has a resource available to receive the potential data response.

The 20Kc System interface supports two external requests of any type, even in the middle of a burst read or write.Figure
8-13 illustrates an intervention example with an associated data response that proceeds in the following manne

• The SOC controller issues an intervention request to the processor.

• The processor returns a state response embedded in the command bus value that indicates the line was dirt
same time the processor also returns a data response on the data bus, completing theIntervention transaction.

SI_ClkIn

EB_PrcCmd[6:0]

WrRscCount 1

EB_PrcAD[31:0]

EB_PrcVld

222 1 1 1 1 21 2 22 2 22 2 22 2 22

Adr 1 Data Data
31:0

Adr 1
63:32

Wr 1
6:0

Wr 1
13:7

EB_SysWrCredit
MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10 149

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

Chapter 8 Bus Interface Unit

ne
equest
sor

on of
tion

r:
Figure 8-13 External Intervention with Associated Data Response

In Figure 8-13, the internal PrcRscCount counter has been programmed with a value of 1, indicating that only o
intervention is supported on the bus at any given time. The count decrements from 1 to 0 when the intervention r
(Inter 1) is placed in theEB_SysCmd[13:0]bus. At some later point, indicated by the break in the diagram, the proces
asserts theEB_PrcCreditsignal for one clock and drives data and command information onto the bus. The asserti
EB_PrcCredit causes the PrcRscCount counter to increment from 0 back to 1. In this example, another interven
request was pending. As soon as the SOC controller samplesEB_PrcCredit asserted, it issues another intervention
request (Inter 2). This in turn causes the PrcRscCount counter to again decrement from 1 to 0.

Figure 8-14 shows an external intervention request with no data response that proceeds in the following manne

• The SOC controller issues an intervention request to the processor.

• At some later point, indicated by the break in the diagram, the processor responds by assertingEB_PrcVld. The
processor data and command buses are driven in the same clock asEB_PrcVld is asserted. TheEB_PrcCmd bus
contains the state response, and theEB_PrcAD bus is ignored.

Figure 8-14 External Intervention with No Data Response

SI_ClkIn

EB_SysCmd[13:0]

EB_SysVld

PrcRscCount 1

EB_PrcAD[31:0]

EB_PrcVld

Inter 1

1 11 1 1 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0

EB_PrcCmd[6:0]

EB_PrcCredit

Inter 2

EB_SysAD[63:0] Addr 1 Addr 2

Data Data Data Data Data Data DataData

SI_ClkIn

EB_SysCmd[13:0]

EB_SysVld

PrcRscCount 1

EB_PrcAD[31:0]

EB_PrcVld

Inter 1

1 11 1 1 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1

EB_PrcCmd[6:0]

EB_SysAD[63:0] Addr 1
150 MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

8.3 Processor and External Request Protocols (64-bit EB_SysAD Mode)

e cache
etect
 of

ts to
t ahead
8.3.2.2 External Invalidation Request

The SOC controller issues an invalidation when the following conditions are satisfied:

• There is a processor resource to receive the external request.

• There is no conflicting pending processor request.

Figure 8-15 shows an external invalidation request.

Figure 8-15 External Invalidation

In Figure 8-15, the processor receives the invalidation request onEB_SysCmd[13:0] and at some later point, indicated
by the break in the diagram, responds by assertingEB_PrcVld. The processor drives the cache state onto the
EB_PrcCmd[6:0] bus in the same clock asEB_PrcVld is asserted.

8.3.3 Coherency Conflicts

Coherency conflicts occur when there are concurrent requests by the processor and the SOC controller to the sam
line. Due to the point-to-point (unidirectional) buses in the 20Kc System interface, it is not always possible to d
those conflicts in time. Both the SOC controller and the processor must have some logic to handle these types
situations.Section 8.3.3.1, "Conflict Resolution"describes how the processor handles coherency conflicts, andSection
8.3.3.2, "External Observable Behavior" describes the corresponding behavior observed by the SOC controller.

8.3.3.1 Conflict Resolution

The processor implements the most straightforward solution when conflicts are present. The processor attemp
replicate the behavior of two concurrent requests in transit at the same time, even though it may detect the conflic
of time:

Table 8-12 Conflict Resolution

External Request Conflicting External Request Resolution

Block Read

Intervention Exclusive Conflicting external requests have no effect on block
read requests. The processor sends a state response
of Invalid and also sends the read request with no
ordering constraints.Invalidate

Block Write

Intervention Exclusive Conflicting external requests have no effect on block
write requests. The block write request issues to the
System interface, followed by a state response of
Invalid.Invalidate

SI_ClkIn

EB_SysCmd[13:0]

EB_SysVld

PrcRscCount 1

Inval

1 11 1 1

EB_PrcCmd[6:0]

EB_PrcVld

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Cache
State

Cache
State

EB_SysAD[63:0] Addr 1
MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10 151

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

Chapter 8 Bus Interface Unit

OC or
ill send
ds with
ceives
he

of the

above.
8.3.3.2 External Observable Behavior

Table 8-13 lists what the SOC controller should expect in response to its request, including both conflicting and
non-conflicting cases.

8.3.3.3 Implications of Coherency Conflicts on SOC Controller design

If there is a pending read request from the 20Kc for the same line as an invalidate/intervention request from the S
the 20Kc issues a read request for the same line before issuing the invalidate/intervention response, the 20Kc w
an invalid response no matter when the SOC controller replies to the read request. Even though the 20Kc respon
an invalid response, it will proceed to refill its internal data cache with the read response from the SOC when it re
it.The SOC controller must therefore retry the invalidate/intervention request in order to remove that line from t
internal cache. This retry needs to happen only if the state response isInvalid.

Illustrated below are some examples of situations where such a retry is required. In the following examples, each
numbered steps implies a time ordered sequence.

Example 1:

1) The 20Kc sends a read request for address A to the SOC.

2) The SOC sends an intervention for address A to the 20Kc. This step can occur after or concurrently with step 1

3) The 20Kc sends an invalid response to the SOC.

4) The SOC sends the read response for address A to the 20Kc.

Example 2:

1) The SOC sends an intervention for address A to the 20Kc

2) The 20Kc sends a read request for address A to the SOC

Table 8-13 Acceptable Responses to External Requests

Processor Request Possible Responses

Invalidate

The processor returns a state response ofInvalid, Clean Exclusive, orDirty Exclusive.

The processor issues a read request to the same line then the processor returns a state
response ofInvalid.

The processor issues a write request to the same line then the processor returns a state
response ofInvalid.

Intervention Exclusive

The processor returns a state response ofInvalid or Clean Exclusive.

The processor returns a state response ofDirty Exclusiveand a data response.

The processor issues a read request to the same line then the processor returns a state
response ofInvalid.

The processor issues a write request to the same line then the processor returns a state
response ofInvalid.
152 MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

8.3 Processor and External Request Protocols (64-bit EB_SysAD Mode)

above.

e
r, critical
3) The 20Kc sends an invalid response to the SOC

4) The SOC sends the read response for address A to the 20Kc

Example 3:

1) The SOC sends an intervention for address A to the 20Kc

2) The 20Kc sends a read request for address A to the SOC. This step can occur after or concurrently with step 1

3) The SOC sends the read response for address A to the 20Kc

4) The 20Kc sends an invalid response to the SOC

Example 4:

1) The 20Kc sends a read request for address A to the SOC

2) The SOC sends an intervention for address A to the 20Kc

3) The SOC sends the read response for address A to the 20Kc

4) The 20Kc sends an invalid response to the SOC

8.3.4 Data Ordering

Block data transfers require a convention to specify the order in which the different doublewords in the block ar
transferred on the bus. The 20Kc System interface performs and expects all data transfers to be in linear orde
word first; the requested doubleword is always the first to be transferred on the bus.Figure 8-16shows the data transfer
ordering for the four possible requested doubleword addresses (002, 012, 102, 112).

Figure 8-16 64-bit Block Data Ordering

DW0 DW1 DW2 DW3

DW0DW1 DW2 DW3

DW0 DW1DW2 DW3

DW0 DW1 DW2DW3

DW0

DW1

DW2

DW3

Requested Doubleword Return Order

Command Bus

13:0 13:0 13:013:0PrcCmd/SysCmd
MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10 153

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

Chapter 8 Bus Interface Unit

transfer
ired to
ocks to
d along
g with

e data
modulo
e

 access,

r 64-bit

bus
All transfers on the 20Kc System interface must be 64 bits wide. Each transfer equates to 64 bits of data per data
along with 14 bits of command information. However, in 32-bit systems, twice as many data transfers are requ
move the requested data as in a 64-bit system. In addition, the 7-bit width of the command bus requires two cl
transfer the entire 14-bit command bus value. In this case the lower seven bits of the command bus is transferre
with the lower 32 bits of the 64-bit doubleword, and the upper seven bits of the command bus is transferred alon
the upper 32 bits of the 64-bit doubleword. This is shown in the following figure.

Figure 8-17 32-bit Block Data Ordering

8.3.5 Data Alignment

Data on the 20Kc System interface must always be aligned. The valid byte lines depend upon the position of th
with respect to the aligned doubleword. For example, in little-endian mode, on a byte request where the address
8 is 4,EB_SysAD[39:32]are valid during the data cycle.Figure 8-18illustrates such an example and contrasts it to th
big-endian case.

Figure 8-18 Data Alignment Example

The valid bytes in a given doubleword on the system bus depend on the low-order address bits, the size of the
and the endianness. Refer toTable 2-1 for more information on the valid bytes.

8.3.6 Dual Multiplexed Address and Data Buses

The 20Kc System interface contains a 32-bit processor unidirectional multiplexed address/data bus, and a 32- o
SOC controller unidirectional multiplexed address/data bus. TheEB_PrcAD[31:0] bus is always driven by the
processor, and theEB_SysAD[63:0]bus is always driven by the SOC controller. The minimum transfer size on the

W0 W1 W2 W3

W5W2 W3 W4

W6 W7W4 W5

W7 W0 W1W6

DW0

DW1

DW2

DW3

Requested Doubleword 32-bit Return Order

Command Bus

13:7 6:0 13:76:0

W4 W5 W6 W7

W1W6 W7 W0

W2 W3W0 W1

W3 W4 W5W2

DW0 DW1 DW2 DW3

DW1 DW2 DW3 DW0

DW2 DW3 DW0 DW1

DW3 DW0 DW1 DW2

13:7 6:0 13:76:0PrcCmd/SysCmd

Byte 4

0

0

63

63

3239

EB_SysAD

EB_SysAD

Little Endian

Big Endian Byte 4

2431
154 MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

8.3 Processor and External Request Protocols (64-bit EB_SysAD Mode)

rs

the
is 64 bits. The 20Kc System interface also supports a 32-bitEB_SysAD bus. The number of address and data transfe
required depends on the configuration of the processor and SOC controller as shown inTable 8-14.

The 20Kc System interface allows for a full 32-byte cache line to be retrieved in one eight-transfer burst. Both
processor and the SOC controller address/data and control buses are parity protected.

• TheEB_PrcADP[1:0] signals provide parity for the processor address/data bus.

• TheEB_SysADP[7:0] signals provide parity for the SOC controller address/data bus.

• TheEB_PrcCmdPsignal provides parity for the processor control bus.

• TheEB_SysCmdP[1:0]signals provide parity for the SOC controller control bus.

The processor parity bits map to the address/data bytes as shown inTable 8-15.

Table 8-14 20Kc System Interface Address and Data Transfer Requirements

Cycle Type
Address/Data

Transfers

Configuration

32-bit EB_PrcAD
32-bit EB_SysAD

32-bit EB_PrcAD
64-bit EB_SysAD

Block Read
(32 bytes)

Address:

Data:

2 clocks on EB_PrcAD

8 clocks on EB_SysAD

2 clocks on EB_PrcAD

4 clocks on EB_SysAD

Double/Single/
Partial Word Read

Address:

Data:

2 clocks on EB_PrcAD

2 clocks on EB_SysAD1

2 clocks on EB_PrcAD

1 clocks on EB_SysAD

Block Write
(32 bytes)

Address:

Data:

2 clocks on EB_PrcAD

8 clocks on EB_PrcAD

2 clocks on EB_PrcAD

8 clocks on EB_PrcAD

Double/Single/
Partial Word Write

Address:

Data:

2 clocks on EB_PrcAD

2 clocks on EB_PrcAD2

2 clocks on EB_PrcAD

2 clocks on EB_PrcAD

Intervention
(no data response)

Address:

Data:

2 clocks on EB_SysAD

2 clocks on EB_PrcAD

1 clocks on EB_SysAD

2 clocks on EB_PrcAD

Intervention
(with data response)

Address:

Data:

2 clocks on EB_SysAD

8 clocks on EB_PrcAD

1 clocks on EB_SysAD

8 clocks on EB_PrcAD

Invalidate
Address:

Data:

2 clocks on EB_SysAD

2 clocks on EB_PrcAD3

1 clocks on EB_SysAD

2 clocks on EB_PrcAD

1. 64 bits = minimum read size

2. 64 bits = minimum write size

3. No data cycles on invalidates

Table 8-15 Processor Address/Data Bus and Corresponding Parity Bit

Data Parity Bit

EB_PrcAD[31:24] EB_PrcADP[3]

EB_PrcAD[23:16] EB_PrcADP[2]

EB_PrcAD[15:8] EB_PrcADP[1]

EB_PrcAD[7:0] EB_PrcADP[0]
MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10 155

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

Chapter 8 Bus Interface Unit

it
fers are
h the

ysAD

r

e SOC
first

and bus.
The SOC controller parity bits map to the system address/data bytes as shown inTable 8-16.

8.4 Bus Encoding (32-bit EB_SysAD Mode)

This section contains theEB_PrcCmd[6:0]andEB_SysCmd[6:0]bus encoding for command and data cycles in 32-b
EB_SysAD mode. Note that even through the processor and SOC controller bus widths are 32 bits wide, trans
still made in 64-bit quantities over two clocks. In the first clock, the lower 32 bits of data are transferred along wit
lower seven bits of command information onEB_PrcCmd[6:0]or EB_SysCmd[6:0]. In the second clock, the upper 32
bits of data are transferred along with the upper seven bits of command information onEB_PrcCmd[6:0] or
EB_SysCmd[6:0]. This section discusses 32-bit SOC mode. Refer toSection 8.2, "Bus Encoding (64-bit EB_SysAD
Mode)" for more information on the 64-bit SOC mode.

8.4.1 PrcCmd/SysCmd Bus Encoding (Command Cycles)

In 32-bit EB_SysAD mode, the 20Kc System interface contains a 7-bit processor command bus and a 7-bit EB_S
command bus that contain request and identification information for the transaction.EB_PrcCmd[6:0]is driven by the
processor and contains the command information.EB_SysCmd[6:0]is driven by the SOC controller. The encoding fo
each bus is identical.

Figure 8-19 shows the command bus format for the processor and SOC controller. In 32-bit bus mode, where th
controller is 32 bits, the command is transferred in two consecutive clocks. The lower seven bits is transferred
followed by the upper seven bits in the following clock. The same is true for transfers on theEB_PrcCmd[6:0]command
bus.

There are two types of command transfers (data and address). These transfers determine the format of the comm
During the address phase of a transaction the ‘command’ format is transferred as shown inFigure 8-19.

Table 8-16 System Address Bus and Check Bits

Data Parity Bit

EB_SysAD[63:56] EB_SysADP[7]

EB_SysAD[55:48] EB_SysADP[6]

EB_SysAD[47:40] EB_SysADP[5]

EB_SysAD[39:32] EB_SysADP[4]

EB_SysAD[31:24] EB_SysADP[3]

EB_SysAD[23:16] EB_SysADP[2]

EB_SysAD[15:8] EB_SysADP[1]

EB_SysAD[7:0] EB_SysADP[0]
156 MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

8.4 Bus Encoding (32-bit EB_SysAD Mode)

e
in
Figure 8-19 Command Bus Formats During a Command Cycle (32-bit EB_SysAD Mode)

8.4.1.1 Processor Request Encoding

TheEB_PrcCmd[6:0]bus contains command information about each of the above requests. The encoding for th
EB_SysCmdbus is identical. The RQ[2:0] field inFigure 8-19encodes the different type of processor requests shown
Table 8-17.

8.4.1.2 Processor Read Request Encoding

A processor read request occurs when the RQ[2:0] field contains a value of 0b000.

Processor Read Request Type Encoding

The upper two bits of the RQS[4:3] field encode the type of processor read request as shown inTable 8-18. This
information is useful in handling the associated external response.

Table 8-17 Request Encoding

RQ[2:0] Request Type

0 Read Request (Processor only)

1 Reserved

2 Write Request (Processor only)

3 Reserved

4 Invalidate Request (SOC Controller only)

5 Reserved

6 Intervention Request (SOC Controller only)

7 Reserved

Table 8-18 Encoding of RQS[4:3] for Processor Read Requests

RQS[4:3] Request Type

0 Reserved

1 Coherent Block Read, Exclusive

2 Noncoherent Block Read

3 Double/Single/Partial Word Read

7-bit Half Width Command
(First Cycle)

RQ[2:0] DID[2:0]

01346

7-bit Half Width Command
(Second Cycle)

ID[4:3]

01

RQS[4:0]

26

D = Data Identifier: 0 = command cycle, 1 = data cycle
RQ = type of transaction being requested
ID = 5-bit transaction identification field
RQS = contains information specific to the transaction
MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10 157

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

Chapter 8 Bus Interface Unit

[1:0],
it

read
equests
ber of

 the
Processor Block Read Transfer Size Encoding

Block read requests transfer 32 bytes of data in a single transaction. The lower two bits of the RQS field, RQS
indicate the size of the block read transfer as shown inTable 8-19. Note that during a block read request, the RQS[2] b
is reserved and is not used in the encoding process.

Processor Double/Single/Partial Word Read Encoding

The 20Kc System interface allows for the transfer of doubleword, word, and partial word data types. A partial word
requests the transfer of less than 32 bits of data. A single word read requests 32 bits of data. A doubleword read r
64 bits of data. During these types of requests, the lower three bits of the RQS field, RQS[2:0], encode the num
bytes valid for the transaction as shown inTable 8-20. Note thatEB_PrcAD[2:0] contains the address of the first valid
byte in the doubleword. Refer toTable 8-14 for all valid combinations of address and access size.

8.4.1.3 Processor Write Request Encoding

The upper five bits of the command bus, RQS[4:0], contains information specific to the transaction indicated by
RQ[2:0] field.

Table 8-19 Encoding of RQS[1:0] for Processor Block Read Requests

RQS[1:0] Block Transfer Size

0 Reserved

1 8 words

2 Reserved

3 Reserved

Table 8-20 Encoding of RQS[2:0] for Processor D/S/P Word Read Requests

RQS[2:0] Number of Bytes Valid

0 1 byte valid

1 2 bytes valid

2 3 bytes valid

3 4 bytes valid

4 5 bytes valid

5 6 bytes valid

6 7 bytes valid

7 8 bytes valid
158 MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

8.4 Bus Encoding (32-bit EB_SysAD Mode)

essor

[1:0],
]

write
rite
e the
Processor Write Request Type Encoding

The upper two bits of this field, RQS[4:3], indicate the type of write operation. During the address cycle of proc
write requests, RQS[4:3] contain the type of write operation as shown inTable 8-21. This information is useful in
handling the associated write data.

Processor Block Write Transfer Size Encoding

Block write requests transfer 32 bytes of data in a single transaction. The lower two bits of the RQS field, RQS
indicate the size of the block write transfer as shown inTable 8-22. Note that during a block write request, the RQS[2
bit is reserved and is not used in the encoding process.

Processor Double/Single/Partial Word Write Request Encoding

The 20Kc System interface allows for the transfer of doubleword, word, and partial word data types. A partial word
requests the transfer of less than 32 bits of data. A single-word write requests 32 bits of data. A doubleword w
requests 64 bits of data. During these types of requests, the lower three bits of the RQS field, RQS[2:0], encod
number of bytes valid for the transaction as shown inTable 8-23. Note thatEB_PrcAD[2:0]contains the address of the
first valid byte in the doubleword. Refer toTable 8-14 for all valid combinations of address and access size.

Table 8-21 Encoding of RQS[4:3] for Processor Write Requests

RQS[4:3] Write Cause Indication

0 Uncached Accelerated Block Write

1 Reserved

2 Block Write

3 Double/Single/Partial Word Write

Table 8-22 Encoding of RQS[1:0] for Processor Block Write Requests

RQS[1:0] Block Transfer Size

0 Reserved

1 8 words

2 Reserved

3 Reserved

Table 8-23 Encoding of RQS[2:0] for Processor D/S/P Word Write Requests

RQS[2:0] Number of Bytes Valid

0 1 byte valid

1 2 bytes valid

2 3 bytes valid

3 4 bytes valid

4 5 bytes valid

5 6 bytes valid

6 7 bytes valid

7 8 bytes valid
MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10 159

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

Chapter 8 Bus Interface Unit

of valid
us is
ed
ress.

 of

its
]

equest
mand

ode,
sferred
Processor Uncached Accelerated Block Write Request Encoding

During the address cycle of processor uncached accelerated block write requests, RQS[2:0] contain the number
words in the block transfer as shown inTable 8-24. This value is needed because the transfer size on the system b
always eight words regardless of the actual number of valid words contained within the block. Note that uncach
accelerated writes are always block-aligned, and the first valid word is the one located at the block-aligned add

8.4.1.4 External Invalidation Request Encoding

The external invalidation request is selected when the RQ[2:0] field contains a value of 0b100. During this type
request, the RQS[1:0] field is reserved.

8.4.1.5 External Intervention Request Encoding

The external intervention request is selected when the RQ[2:0] field contains a value of 0b110. The RQS[1:0] b
determine the type of intervention request as shown inTable 8-25. Note that during an intervention request, RQS[4:2
are reserved and are not used in the encoding process.

8.4.1.6 PrcCmd/SysCmd Bus Encoding (Data Cycles)

In 32-bit EB_SysAD mode, the 20Kc System interface contains two identical 7-bit command buses that contain r
and identification information for the transaction. EB_PrcCmd[6:0] is driven by the processor and contains the com
information.EB_SysCmd[6:0]is driven by the SOC controller. The encoding for each bus is identical.

Figure 8-20 below shows the command bus format for the processor and SOC controller. In 32-bit EB_SysAD m
where the bus width is 32 bits, the command is transferred in two consecutive clocks. The lower seven bits are tran
first, followed by the upper seven bits in the following clock. This is true for both theEB_PrcCmd[6:0] and
EB_SysCmd[6:0] buses.

Table 8-24 Encoding of RQS[2:0] for Processor Uncached Accelerated Write Requests

RQS[2:0] Number of Words Valid

0 1 word valid

1 2 words valid

2 3 words valid

3 4 words valid

4 5 words valid

5 6 words valid

6 7 words valid

7 8 words valid

Table 8-25 Encoding of RQS[1:0] for External Intervention Requests

RQS[1:0] Type of Intervention

0 Reserved

1 Change Cache Line State to Invalid

2 Reserved

3 Reserved
160 MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

8.4 Bus Encoding (32-bit EB_SysAD Mode)

and bus.

uring

. The

eptions
ysical
There are two types of command transfers (data and address). These transfers determine the format of the comm
During the data phase of a transaction the ‘data’ format is transferred on the command bus as shown inFigure 8-20.

Figure 8-20 Command Bus Formats During a Data Cycle

8.4.1.7 Cache Line State Encoding

The C[1:0] field is loaded with bits [2:1] of the command bus. The C[1:0] field indicates the state of the cache line d
a state response, which occurs in response to an external request.Table 8-26 shows the encoding of the C[1:0] field.

8.4.1.8 Data Status Bit Encoding

The DS[4:0] field inFigure 8-20above indicates the status of data on the bus at any given point in the transaction
encoding for this field is shown inTable 8-27.

If DS[2] is asserted on the SysCmd bus during a read, the processor takes a Bus Error exception. (Bus Error exc
typically are raised by the SOC controller for events such as bus time-outs, local bus parity errors, and invalid ph

Table 8-26 Encoding of the C[1:0] Field

C[1:0] Cache State

0 Invalid

1 Reserved

2 Clean Exclusive

3 Dirty Exclusive

Table 8-27 Encoding of the DS[4:0] Field

DS[4:0] Name Value Data Status

DS[4] Last Data
1 Last data element

0 Not the last data element

DS[3] Resp Data
1 Data is response data

0 Data is not response data

DS[2] Err Data
1 Data is erroneous

0 Data is error free

DS[1] Check Enable
1 Check data and parity

0 Do not check data and parity

DS[0] Reserved

7-bit Half Width Command
(First Cycle)

7-bit Half Width Command
(Second Cycle)

C[1:0] DR

01234

ID[2:0]

6

0

ID[4:3]

1

DS[4:0]

26

D = Data Identifier: 0 = command cycle, 1 = data cycle
C = Cache line state
ID = 5-bit transaction identification field
DS = contains information specific to the transaction
MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10 161

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

Chapter 8 Bus Interface Unit

signalled
ust be

 such as

_SysAD
section
AD

o access
and

re used
cached
r

requested
ng the
e SOC
the SOC

 as

ss and

quest.
es the
e
nal
cCount
memory addresses or access types.) Block read requests must complete and are not aborted by Bus Error being
in this way. Note that during a write, the SOC controller does not drive the SysCmd bus, so equivalent errors m
signalled by the SOC controller via an interrupt exception. Also note that DS[2] serves other purposes as well,
reporting parity errors on data that is being flushed out of the cache.

8.5 Processor and External Request Protocols (32-bit EB_SysAD Mode)

This section discusses the data transfer protocols associated with processor and external requests in 32-bit EB
mode. The 20Kc System interface supports two bus combinations for the processor and the SOC controller. This
focuses on 32-bit EB_SysAD mode. Refer toSection 8.3, "Processor and External Request Protocols (64-bit EB_Sys
Mode)" for more information on 64-bit EB_SysAD mode.

The processor drives theEB_PrcADbus, and the SOC controller drives theEB_SysADbus. The highest performance is
achieved using a 64-bitEB_SysAD bus for the SOC controller.

8.5.1 Processor Requests

A processor request can be a single request, or a series of requests through the 20Kc System interface used t
some external resource. The 20Kc System interface supports both read and write processor requests in block
non-block modes.

Block reads are used for cache line fills and are triggered by instruction or data cache misses. Non-block reads a
for uncached load or fetch accesses. Block writes can result because of writebacks from the data cache, or un
accelerated operations. Non-block write requests are issued when the processor executes uncached stores, o
write-through stores.

8.5.1.1 Processor Read Requests

When a processor issues a read request, the SOC controller must access the specified resource and return the
data. A processor read request can be split from the return of the requested data by the SOC controller, allowi
processor to place another request on the bus prior to the time that data from the first request is returned by th
controller. A processor read request is completed after the last word of response data has been received from
controller.

The 20Kc System interface defines three types of read operations that can be initiated by the processor:

• Coherent block read, exclusive

• Noncoherent block read

• Double/Single/Partial word read

The processor issues a Read request when there are adequate read resources available in the SOC controller
determined by the value of the RdRscCount counter.

Processor Block Read Requests

Figure 8-21 shows a back-to-back block read operation in 32-bit EB_SysAD mode. The processor drives addre
command information onEB_PrcADandEB_PrcCmd, indicated by Adr 1 onEB_PrcAD. The address driven out on the
EB_PrcADis not block aligned, but corresponds to the actual address of the instruction that triggered the read re
This address can therefore be byte, word, halfword or doubleword aligned. In the next clock, the processor driv
second address onto the bus, denoted by Adr 2 onEB_PrcAD. In this example the SOC controller supports up to thre
outstanding read cycles on the bus at any given time. Therefore, prior to the first address being driven the inter
RdRscCount counter contains a value of 3. The driving of the first address onto the bus causes the internal RdRs
162 MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

8.5 Processor and External Request Protocols (32-bit EB_SysAD Mode)

t clock

along

r

rement
he

essor

the first
ess onto
second
 1) as

action
er
fter
 by the
nt from 2
counter to decrement by one (from 3 to 2) as shown. The driving of the second address onto the bus in the nex
causes the internal RdRscCount counter to decrement by one (from 2 to 1) as shown. Two read cycles are now
outstanding on the bus.

At some later point, indicated by the break in the diagram, the SOC controller drives data for the first transaction
with theEB_SysDataVld signal. The SOC controller continues to driveEB_SysDataVld as long as valid data is on the
bus. However, the 20Kc System interface only requires that theEB_SysRdCreditsignal be asserted for one clock eithe
before, during, or after completion of the transaction. In this example, assertion of the firstEB_SysRdCreditby the SOC
controller occurs about halfway through the first data transaction, causing the internal RdRscCount counter to inc
by 1 (from 1 to 2). The secondEB_SysRdCredit issued by the SOC controller also occurs about half way through t
second data transaction, causing the internal RdRscCount counter to increment by 1 (from 2 to 3).

Figure 8-21 32-bit EB_PrcAD/32-bit EB_SysAD Block Read Protocol

Processor Double/Single/Partial Word Read Requests

Figure 8-22 shows a back-to-back non-block read operation in 32-bit EB_SysAD mode. In this diagram the proc
drives address and command information ontoEB_PrcAD andEB_PrcCmd, indicated by Adr 1 on EB_PrcAD. In the
next clock the processor drives the second address onto the bus, denoted by Adr 2 onEB_PrcAD. In this example, the
SOC controller supports up to three outstanding read operations on the bus at any given time. Therefore, prior to
address being driven the internal RdRscCount counter contains a value of 3. The processor drives the first addr
the bus, causing the internal RdRscCount counter to decrement by one (from 3 to 2) as shown. The driving of the
address onto the bus in the next clock causes the internal RdRscCount counter to decrement by one (from 2 to
shown. Two read cycles are now outstanding on the bus.

At some later point, indicated by the first break in the diagram, the SOC controller drives data for the first trans
along with theEB_SysDataVld signal. At some point before, during, or after the first transaction the SOC controll
assertsEB_SysRdCredit, causing the internal RdRscCount counter to increment by 1 (from 1 to 2). At some point a
the assertion of the first data transfer, the SOC controller then drives data for the second transaction, indicated
second break in the diagram, then again asserts EB_SysRdCredit, causing the RdRscCount counter to increme
to 3. Note that there is no timing relationship between the transfer of data and the assertion ofEB_SysRdCredit.

SI_ClkIn

EB_PrcCmd[6:0]

EB_PrcVld

RdRscCount 3 1 13 2 2 3 3 33 3 32 22 2 222

EB_PrcAD[31:0] Adr 1
31:0

Adr 1
63:32

Adr 2
31:0

Adr 2
63:32

Rd 1
6:0

Rd 1
13:7

Rd 2
6:0

Rd 2
13:7

EB_SysAD[31:0]

EB_SysVld

Data Data Data Data Data Data DataData Data Data Data Data Data DataData

2

EB_SysRdCredit

EB_SysCmd[6:0]
MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10 163

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

Chapter 8 Bus Interface Unit

sor write

d by the

n on

en the
cCount

nsaction
Figure 8-22 32-bit EB_PrcAD/32-bit EB_SysAD Double/Single/Partial Word Read Protocol

8.5.1.2 Processor Write Requests

When a processor issues a write request, the specified resource is accessed and the data is written to it. A proces
request is complete after the last word of data has been transmitted to the SOC controller.

The processor issues a Write request when there are write resources available in the SOC controller as indicate
value in the WrRscCount counter.

Processor Block Writes

Figure 8-23 shows a processor block write in 32-bit EB_SysAD mode. The processor drives address informatio
EB_PrcAD, and command information onEB_PrcCmd. Data is driven in the following clock. In this example the SOC
controller allows two outstanding write cycles on the bus at any given time. Therefore, prior to address being driv
internal WrRscCount counter contains a value of 2. The driving of address onto the bus causes the internal WrRs
counter to decrement by one (from 2 to 1) as shown. The SOC controller can assertEB_SysWrCreditat any point before,
during, or after the transaction is completed. A few clocks later the processor drives address for the second tra
onto the bus, causing the counter to again decrement from 1 to 0. Once the processor samplesEB_SysWrCreditasserted,
the WrRscCount counter is incremented (from 0 to 1). Note that the assertion ofEB_SysWrCreditfor the second block
write is not shown in the figure.

Figure 8-23 32-bit EB_PrcAD Block Write Protocol

Data Data

SI_ClkIn

EB_PrcCmd[6:0]

EB_PrcVld

RdRscCount 3 1 13 2 2 33 3 33 32 2 222

EB_PrcAD[31:0] Adr 1
31:0

Adr 1
63:32

Adr 2
31:0

Adr 2
63:32

Rd 1
6:0

Rd 1
13:7

Rd 2
6:0

Rd 2
13:7

2

EB_SysAD[31:0]

EB_SysVld

Data Data

2

EB_SysRdCredit

EB_SyCmd[6:0]

SI_ClkIn

EB_PrcCmd[6:0]

WrRscCount 1

EB_PrcAD[31:0]

EB_PrcVld

222 1 1 1 1 11 1 11 1 00 0 00 1 11

Adr 1 Data Data Data Data Data Data DataData
31:0

Adr 1
63:32

Adr 2
31:0

Data Data Data Data Data Data DataDataAdr 2
63:32

Wr 1
6:0

Wr 1
13:7

Wr 2
6:0

Wr 2
13:7

EB_SysWrCredit
164 MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

8.5 Processor and External Request Protocols (32-bit EB_SysAD Mode)

us at
. The
own. At

unter is

ds in the
d
ed

ruction

s. Under
e cache

its
ns are
Processor Double/Single/Partial Word Write Requests

In Figure 8-24, the processor drives address information onEB_PrcAD, and command information onEB_PrcCmd. Data
is driven in the following clock. In this example, the SOC controller supports two outstanding write cycles on the b
any given time. Therefore, prior to address being driven the internal WrRscCount counter contains a value of 2
driving of address onto the bus causes the internal WrRscCount counter to decrement by one (from 2 to 1) as sh
some later time, indicated by the break in the timing diagram, the SOC controller assertsEB_SysWrCredit, indicating
that it has accepted the data on the bus. Once the processor samples this signal asserted, the WrRscCount co
incremented.

Figure 8-24 32-bit EB_PrcAD Double/Single/Partial Word Write Protocol

Processor Uncached Accelerated Write Request

During the address cycle of processor uncached accelerated requests, RQS[2:0] contain the number of valid wor
block transfer. The 20Kc System interface allows between 1 to 8 words of data to be transferred in an uncache
accelerated transaction. For the encoding of the RQS[2:0] field, refer to the section entitled “Processor Uncach
Accelerated Block Write Request Encoding” onpage 160.

8.5.1.3 External Requests

External requests include intervention and invalidate. These requests apply to the data cache only, not the inst
cache.

Intervention requests require the processor to return the state of the cache line at the specified physical addres
certain conditions related to the state of the cache line and the nature of the intervention request, the contents of th
line can be returned. The state of the line is modified by this request.

Invalidate requests specify a cache line that must be marked invalid in the processor data cache.

External Intervention Request

The external intervention request is selected when the RQ[2:0] field contains a value of 0b110. The RQS[1:0] b
determine the type of Intervention request. The SOC controller issues an intervention when the following conditio
satisfied:

• There is a processor resource to receive the external request.

• The SOC controller has a resource available to receive the potential data response.

The 20Kc System interface supports two external requests of any type.Figure 8-25 illustrates an intervention example
with an associated data response that proceeds in the following manner:

SI_ClkIn

EB_PrcCmd[6:0]

WrRscCount 1

EB_PrcAD[31:0]

EB_PrcVld

222 1 1 1 1 21 2 22 2 22 2 22 2 22

Adr 1 Data Data
31:0

Adr 1
63:32

Wr 1
6:0

Wr 1
13:7

EB_SysWrCredit
MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10 165

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

Chapter 8 Bus Interface Unit

y. At the
on.

ne
equest
sor

on of
mple a

er

anner.
• The SOC controller issues an intervention request to the processor.

• The processor returns a state response embedded in the command bus value that indicates if the line was dirt
same time the processor also returns a data response on the data bus, completing the Intervention transacti

Figure 8-25 External Intervention with Associated Data Response

In Figure 8-25, the internal PrcRscCount counter has been programmed with a value of 1, indicating that only o
intervention is supported on the bus at any given time. The count decrements from 1 to 0 when the intervention r
(Inter 1) is placed in theEB_SysCmd[6:0]bus. At some later point, indicated by the break in the diagram, the proces
asserts theEB_PrcCreditsignal for one clock and drives data and command information onto the bus. The asserti
EB_PrcCredit causes the PrcRscCount counter in the SOC controller to increment from 0 back to 1. In this exa
second intervention request is pending, but could not be generated until after the assertion ofEB_PrcCredit by the
processor. As soon as the SOC controller samplesEB_PrcCredit asserted, it issues another intervention request (Int
2). This in turn causes the PrcRscCount counter to again decrement from 1 to 0 as shown inFigure 8-25.

Figure 8-26shows an example of an external intervention with no data response that proceeds in the following m

• The SOC controller issues an intervention request to the processor.

• At some later point, indicated by the break in the diagram, responds by assertingEB_PrcVld. The processor data and
command buses are driven in the same clock asEB_PrcVld is asserted. The command bus contains the state
response, while the data bus is ignored.

SI_ClkIn

EB_SysCmd[6:0]

EB_SysVld

PrcRscCount 1

EB_PrcAD[31:0]

EB_PrcVld

1 11 1 1 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0

EB_PrcCmd[6:0]

EB_PrcCredit

EB_SysAD[31:0]

Data Data Data Data Data Data DataData

Inter1 Inter1

Addr1 Addr1

Inter2 Inter2

Addr2 Addr2
166 MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

8.6 20Kc Signal Descriptions
Figure 8-26 External Intervention with No Data Response

External Invalidation Request

The SOC controller issues an invalidation when the following conditions are satisfied:

• There is a processor resource to receive the external request.

• There is no conflicting pending processor request.

Figure 8-27 External Invalidation

In Figure 8-27, the processor receives the invalidation request onEB_SysCmd[6:0]and at some later point, indicated by
the break in the diagram, responds by assertingEB_PrcVld. The processor drives the cache state onto the
EB_PrcCmd[6:0] bus in the same clock asEB_PrcVld is asserted.

8.6 20Kc Signal Descriptions

Figure 8-28 shows the signals that make up the System interface of the 20Kc processor core.

SI_ClkIn

EB_SysVld

PrcRscCount 1

EB_PrcAD[31:0]

EB_PrcVld

1 11 1 1 0 0 0 0 0 0 1 1 1 1 1 1 1

EB_PrcCmd[6:0]

EB_SysAD[31:0] Addr1 Addr1

EB_SysCmd[6:0] Inter1 Inter1

SI_ClkIn

EB_SysVld

PrcRscCount 1

EB_PrcCmd6:0]

EB_PrcVld

1 11 1 1 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1

EB_SysAD[31:0] Addr Addr

EB_SysCmd[6:0] Inval Inval

Cache
State

Cache
State
MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10 167

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

Chapter 8 Bus Interface Unit

unction.
Figure 8-28 20Kc System Interface Signal Groupings

The pin direction key for the signal descriptions is shown inTable 8-28 below.

The names of interface signals present on a 20Kc core are prefixed with a unique string, that identifies their primary f
Table 8-29 defines the prefixes used for 20Kc core interface signals.

20
K

c
P

ro
ce

ss
or

 In
te

rf
ac

e

S
O

C
 c

on
tr

ol
le

r
In

te
rf

ac
e

MIPS 20Kc Processor

EB_PrcAD[31:0]
EB_PrcADP[3:0]

EB_PrcCmd[6:0]

EB_PrcCredit EB_SysRdCredit

EB_SysAD[63:0]

EB_SysADP[7:0]

EB_SysCmd[13:0]

EB_PrcVld
EB_PrcCmdP

EB_SysVld

EB_SysCmdP[1:0]

EB_SysWrCredit

SI_ClkIn

VssP

VddP

SI_PLLBypass

C
lo

ck
In

te
rf

ac
e SI_Int[5:0]

SI_NMI

In
te

rr
up

t
In

te
rf

ac
e

EJ_TDI

EJ_TCK

EJ_TDO
EJ_TMS

EJ_TRST_N

E
JT

A
G

In
te

rf
ac

e

EJ_DINT

SI_Reset

SI_CkRatio[2:0]
SI_ColdReset

SI_BigEndian
SI_VddOK

In
iti

al
iz

at
io

n
In

te
rf

ac
e

Vdd
Vss

P
ow

er
In

te
rf

ac
e

EB_SysBus32
SI_ClkOut

SI_RP
SI_Sleep P

ow
er

M
an

ge
m

en
t

In
te

rf
ac

e

EJ_DebugM
EJ_TDOzstate

TS_TCmd[3:0]
TS_ScanIn[7:0]

T
es

t
In

te
rf

ac
e TS_ScanOut[7:0]

SI_PRIdOpt[7:0]

EJ_Version[3:0]

EJ_PartNumber[3:0]

TS_Sc1

TS_Sc2

TS_Sden

TS_Scanmode

TS_BistFail
TS_BistDone

TS_Reserved2

TS_Reserved3

TS_BistInvoke
B

IS
T

In
te

rf
ac

e

FT_NorthIn[29:0]
FT_SouthIn[29:0]F

ee
dt

hr
ou

gh
s

TS_Reserved1

R
es

er
ve

d

FT_NorthOut[29:0]
FT_SouthOut[29:0]

TS_Reserved4
TS_Reserved5
TS_Reserved6
TS_Reserved7
TS_Reserved8
168 MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

8.6 20Kc Signal Descriptions

n.
The 20Kc signal descriptions are listed inTable 8-30. The 20Kc core signals are described alphabetically by functio

Table 8-28 20Kc Core Signal Direction Key

Dir Description

I Input to the 20Kc core. Unless otherwise noted, these
signals are sampled on the rising edge of the clock signal.

O Output of the 20Kc core. Unless otherwise noted, these
signals are driven on the rising edge of the clock signal.

S Static Input to the 20Kc core. These signals must not
change state whileSI_VddOk is asserted.

Table 8-29 Signal Prefix Key

Prefix Description

EB_ External Bus signals

SI_ System Interface signals

EJ_ EJTAG interface signals

TS_ Test signals

FT_ Feedthrough signals

Table 8-30 20Kc Core Signal Descriptions

Pin Name Direction Description

External Bus Interface: SOC Interface Signals

EB_SysAD[63:0] I

Core Interface address/data. This bus is driven by the SOC interface
controller. The SOC controller drives address information on
intervention or invalidate requests, and data information on a processor
read.

EB_SysADP[7:0] I

Core Interface address/data parity. TheEB_SysADP[7:0] parity bits
correspond to theEB_SysAD[63:0] data bus as follows:

EB_SysCmd[13:0] I
Core Interface command. This bus is driven by the SOC interface
controller during address and data transactions and provides
information about the type of transaction.

Parity Bit Corresponding Data Byte

EB_SysADP[0] EB_SysAD[7:0]

EB_SysADP[1] EB_SysAD[15:8]

EB_SysADP[2] EB_SysAD[23:16]

EB_SysADP[3] EB_SysAD[31:24]

EB_SysADP[4] EB_SysAD[39:32]

EB_SysADP[5] EB_SysAD[47:40]

EB_SysADP[6] EB_SysAD[55:48]

EB_SysADP[7] EB_SysAD[63:56]
MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10 169

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

Chapter 8 Bus Interface Unit
EB_SysCmdP[1:0] I

Core Interface command parity. This two-bit bus provides parity for
the 14-bitEB_SysCmd bus. TheEB_SysCmdP[1:0] parity bits
correspond to theEB_SysCmd[13:0] command bus as follows:

EB_SysVld I Core Interface command valid. This signal is asserted whenever
information on the SOC command bus is valid.

EB_SysRdCredit I

Flow control from SOC interface for reads. This signal is asserted by
the SOC interface controller to indicate that the current read operation
has successfully completed. The 20Kc core responds by incrementing
its read resource counter.

EB_SysWrCredit I

Flow control from SOC interface for writes. This signal is asserted by
the SOC interface controller to indicate that the current write operation
has successfully completed. The 20Kc core responds by incrementing
its write resource counter.

EB_SysBus32 S
Assertion of this signal at power-up causes the 20Kc core to operate in
32-bit SysAD bus mode. If this signal is deasserted at power-up, the
20Kc core operates in 64-bit SysAD mode.

External Bus Interface: Core Interface Signals

EB_PrcAD[31:0] O Processor Core Bus - address/data. The processor drives address on
read and write operations, and data on write operations.

EB_PrcADP[3:0] O

Processor Core Bus - address/data parity. This bus provides byte parity
for theEB_PrcAD[31:0] bus. The relationship of parity bits to data
bytes is as follows:

EB_PrcCmd[6:0] O
Processor Core Bus - command. This bus is driven by the core along
with address and data transactions and provides information about the
type of transaction.

EB_PrcCmdP O Processor Core Bus - command parity. This one-bit bus provides a
single parity for the seven-bitEB_PrcCmd bus.

EB_PrcVld O Processor Core Bus - command valid. This signal is asserted whenever
information on the core command bus is valid.

EB_PrcCredit O

Flow control to SOC interface. This signal is asserted by the 20Kc core
to indicate that the current read or write operation has successfully
completed. The SOC interface controller responds by incrementing its
resource counter.

System Interface: Clock Signals

SI_ClkIn I
SOC differential clock input - high asserted. All inputs and outputs,
except the EJTAG and Interrupt interface signals, are driven or
captured on the rising edge ofSI_ClkIn.

Table 8-30 20Kc Core Signal Descriptions

Pin Name Direction Description

Parity Bit
Corresponding Command

Bus Bits

EB_SysCmdP[0] EB_SysCmd[6:0]

EB_SysCmdP[1] EB_SysCmd[13:7]

Parity Bit Corresponding Data Byte

EB_PrcADP[0] EB_PrcAD[7:0]

EB_PrcADP[1] EB_PrcAD[15:8]

EB_PrcADP[2] EB_PrcAD[23:16]

EB_PrcADP[3] EB_PrcAD[31:24]
170 MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

8.6 20Kc Signal Descriptions
SI_ClkOut O SOC clock output - high asserted. This pin is used for silicon
debugging of the PLL and is not used during normal operation.

SI_PLLBypass S

The 20Kc core contains an internal PLL to synchronize its high
frequency clock to the SOC clock inputs. This PLL is bypassed
whenever this signal is asserted at power-up. This signal must be
asserted when the device is in cache test mode.

System Interface: Interrupt Interface Signals

SI_Int[5:0] I These signals are driven by external logic and when asserted indicate
the corresponding interrupt exception to the 20Kc core.

SI_NMI I When sampled asserted, this signal causes the 20Kc core to take an
NMI exception.

System Interface: Initialization Interface Signals

SI_Reset I

Reset signal. This signal must be asserted for any reset sequence:
power-on, cold, or warm. It can be asserted synchronously or
asynchronously for a cold reset or power-on reset, and must be
synchronously initiated for a warm reset. It must always be deasserted
synchronously.

This signal and theSI_ColdReset signal determine the nature of the
reset sequence.

SI_ColdReset I

Cold reset signal. This signal must be asserted during either a
power-on reset or a cold reset. It can be asserted synchronously or
asynchronously for a cold reset or power-on reset. It must always be
deasserted synchronously.

This signal and theSI_Reset signal determine the nature of the reset
sequence.

SI_CkRatio[2:0] S

SOC clock to core clock multiplier ratio.

SI_BigEndian S

Indicates the base endianness of the 20Kc core.

SI_VddOk I Indicates all power supplies are stable.

SI_PRIdOpt[7:0] S These signals are used as the upper eight bits of the CP0PRIdregister.

Table 8-30 20Kc Core Signal Descriptions

Pin Name Direction Description

SI_CkRatio[2:0]
Core Clock to SOC Clock

Ratio

000 Reserved

001 2:1

010 3:1

011 4:1

100 5:1

101 6:1

110 7:1

111 8:1

SI_BigEndian Base Endian Mode

0 Little Endian

1 Big Endian
MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10 171

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

Chapter 8 Bus Interface Unit
System Interface: Power Management Signals

SI_RP O This signal represents the state of the RP bit in the CP0Statusregister.

SI_Sleep O
This signal is asserted by the core whenever the WAIT instruction is
executed. The assertion of this signal indicates that the core is in
power-down mode.

EJTAG Interface Signals

EJ_PartNumber[3:0] S
The state of these pins reflects the PartNumber[3:0] field in theDevice
ID register. This value is used by the SOC vendor to program part of
the EJTAG unitDevice ID register.

EJ_TCK I Test Clock Input (TCK) for the EJTAG Test Access Port (TAP).

EJ_TDI I Test Data Input (TDI) for the EJTAG TAP.

EJ_TDO O Test Data Output (TDO) for the EJTAG TAP.

EJ_TMS I Test Mode Select Input (TMS) for the EJTAG TAP.

EJ_TRST_N I Test Reset Input (TRST_N) for the EJTAG TAP. At power-up the
assertion ofEJ_TRST_N causes the TAP controller to be reset.

EJ_DINT I

Debug exception request when this signal is asserted in a 20Kc clock
period after being deasserted in the previous 20Kc clock period. The
request is cleared when debug mode is entered. Requests when in
debug mode is ignored.

EJ_DebugM O This signal is asserted by the core whenever it is in debug mode.

EJ_TDOzstate O Output drive indication for the core pin outputting theEJ_TDOsignal.
When asserted, the core pin outputting theEJ_TDO must be 3-stated.

EJ_Version[3:0] S
The state of these pins reflects the Version[3:0] field in theDevice ID
register. This value is used by the SOC vendor to program part of the
EJTAG unitDevice ID register.

Power Interface

VddP I Quiet Vdd for processor core PLL.

VssP I Quiet Vss for processor core PLL.

Vdd I Core power supply.

Vss I Core ground.

Core Test Interface

TS_TCmd[3:0] S Core test operation control signals.

TS_Sc1 I Scan clock 1.

TS_Sc2 I Scan clock 2.

TS_Sden I Scan data enable.

TS_Scanmode I Used to stop processor clocks during scan. Asserted when shifting in
scan vectors.

TS_ScanIn[7:0] I Core scan input signals.

TS_ScanOut[7:0] O Core scan output signals.

Table 8-30 20Kc Core Signal Descriptions

Pin Name Direction Description
172 MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

8.6 20Kc Signal Descriptions
BIST Interface

TS_BistInvoke I Starts BIST when asserted. Should be deasserted when BIST testing is
over.

TS_BistFail O Asserted to indicate that BIST has failed. Asserted to indicate the
TestFail when BIST is not active.

TS_BistDone O Asserted when BIST is completed. Asserted to indicate the TestDone
when BIST is not active.

Feedthroughs

FT_NorthIn[29:0] I Feedthrough inputs on north side of core.

FT_SouthOut[29:0] O Feedthrough outputs on south side of core.

FT_SouthIn[29:0] I Feedthrough inputs on south side of core.

FT_NorthOut[29:0] O Feedthrough outputs on north side of core.

Reserved

TS_Reserved1 I Reserved. Must connect to Vss (logic 0).

TS_Reserved2 I Reserved. Must connect to Vss (logic 0).

TS_Reserved3 O Reserved.

TS_Reserved4 O Reserved.

TS_Reserved5 I Reserved. Must connect to Vss (logic 0).

TS_Reserved6 O Reserved.

TS_Reserved7 I BIST algorithm select and retention control. Tied to 0 if BIST
retention is not used.

TS_Reserved8 O Reserved.

Table 8-30 20Kc Core Signal Descriptions

Pin Name Direction Description
MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10 173

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

Chapter 8 Bus Interface Unit
174 MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

ly

er
stable

clocks

e

t

Chapter 9

Reset and Initialization

The 20Kc processor supports the following three types of resets.

• Power-On Reset: The Power-On Reset sequence starts when the power supplies are turned on and complete
initializes the internal state of the processor without saving any state information.

• Cold Reset:The Cold Reset sequence completely initializes the internal state of the processor while the pow
supply remains stable. It is similar to the Power-On Reset, the only difference being that the power supplies are
throughout this sequence. The clocks are restarted during this sequence.

• Warm Reset:The Warm Reset sequence restarts the processor while preserving some architectural state. The
are not restarted during this sequence.

9.1 Processor Reset Signals

This 20Kc processor has three reset related input signals:SI_VddOk, SI_ColdReset, andSI_Reset.

SI_Reset: TheSI_Resetsignal must be asserted for any reset sequence. It can be asserted synchronously or
asynchronously for a Cold or Power-On Reset but must be asserted synchronously for a Warm Reset.SI_Resetmust
always be deasserted synchronously withSI_ClkIn.

ColdReset: TheSI_ColdResetsignal must be asserted for Power-On Reset or a Cold Reset. It can be asserted
synchronously or asynchronously but must be deasserted synchronously withSI_ClkIn.

SI_VddOk: TheSI_VddOk signal when asserted, indicates to the processor that all the power supply inputs to th
processor i.e.Vdd, VddP andVss are stable and that the input clockSI_ClkInis also stable. The system configuration
input pins described in the following section are sampled only whenSI_VddOk is asserted.

9.2 Processor Initialization Signals

This section describes the system configuration input pins:SI_CkRatio[2:0], EB_SysBus32, andSI_BigEndian. These
pins are sampled only whileSI_VddOk is asserted. Prior to the assertion ofSI_VddOk, default values are assumed for
these pins. These pins are sampled only whileSI_VddOk is asserted; therefore if they are changed on-the-fly, correc
operational behavior does not occur.

SI_CkRatio[2:0]: This set of pins provides the multiplier to be used on theSI_ClkIn input in order to generate the
internal clock for the processor.Table 9-1 shows the encoding used for this set of pins.

Table 9-1 Clock Multiplier Ratios

SI_CkRatio[2:0] Multiplier Ratio

000 Reserved

001 2:1

010 3:1

011 4:1
MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10 175

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

Chapter 9 Reset and Initialization

ed, the

lies for
e of the

ously
SI_BigEndian: This pin is used to configure the system to operate in Big-Endian mode. When this pin is assert
system operates in Big-Endian mode.

9.3 Reset Sequences

This section describes the following reset sequences:

• Section 9.3.1, "Power-On Reset Sequence"

• Section 9.3.2, "ColdReset Sequence"

• Section 9.3.3, "Warm Reset Sequence"

9.3.1 Power-On Reset Sequence

A Power-On Reset starts with the application of power supplies. The 20Kc processor has separate power supp
core and PLL.The PLL gets the same voltage level as the core, however it requires a quiet and separate sourc
same voltage.

• TheVdd andVss pins supply the voltage required by the core.

• The PLL is fed by theVddP andVssP pins.

The sequence for a Power-On Reset is as follows:

1. The inputSI_VddOk is held low and the input signalsSI_Reset andSI_ColdReset are held high.

2. Vdd andVddP are applied to the part.

3. SI_ClkIn is applied concurrent with or afterVdd.

4. The configuration pinsSI_CkRatio[2:0], SI_BigEndian, EB_SysBus32, andSI_PLLBypass are applied
concurrently with or afterVdd.

5. OnceVdd, VddP, andSI_ClkIn are stable, and the configuration pins have been stable for at least fiveSI_ClkIn
cycles,SI_VddOk is asserted.

6. OnceSI_VddOk is asserted the configuration input pins are sampled.

7. If the JTAG interface is used during power up, it can be activated afterSI_VddOk is asserted.

8. SI_ColdResetandSI_Resetmust be asserted for a minimum of 120 microseconds after the assertion ofSI_VddOk.
This time is allowed in order to get the PLL to lock.

9. SI_ColdResetandSI_Resetare then deasserted simultaneously. It is allowable to not deassert them simultane
but in that caseSI_ColdReset must be deasserted beforeSI_Reset. SI_Reset must not be deasserted before
SI_ColdReset.

100 5:1

101 6:1

110 7:1

111 8:1

Table 9-1 Clock Multiplier Ratios

SI_CkRatio[2:0] Multiplier Ratio
176 MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

9.3 Reset Sequences

ference
required

r (CP0
Figure 9-1 Power-On Reset Sequence

9.3.2 ColdReset Sequence

A Cold Reset (also called Hard Reset) follows almost the same sequence as a Power-On Reset with the only dif
being that all the power supplies are expected to be stable coming into this sequence. A Cold Reset sequence is
whenever the state of any of the configuration input pinsSI_CkRatio[2:0], SI_BigEndian, EB_SysBus32, and
SI_PLLBypass is to be changed. The clocks are restarted on a Cold Reset.

The sequence for a Cold Reset is as follows:

1. SI_ColdReset andSI_Reset are asserted.

2. SI_VddOk is deasserted.

3. After a minimum of fiveSI_ClkIn cycles,SI_VddOk is asserted.

4. OnceSI_VddOk is asserted, system configuration input pins are sampled.

5. If the JTAG interface is used during power up, it can be activated afterSI_VddOk is asserted.

6. SI_ColdResetandSI_Resetmust be asserted for a minimum of 120 microseconds after the assertion ofSI_VddOk.
This time is allowed in order to get the PLL to lock.

7. SI_ColdResetandSI_Resetare then deasserted simultaneously. It is also allowable to deassertSI_ColdResetbefore
SI_Reset,and a Cold Reset will be performed, but in that case, the SR (Soft Reset) bit in the Status Registe
Register 12, Select 0) will be set.

VddP

Vdd

SI_ClkIn

SI_VddOk

EJ_JTxxx

SI_Reset

SI_ColdReset

SI_BigEndian
SI_CkRatio[2:0]
SI_PLLBypass
EB_SysBus32 ≥ 5 SI_ClkIn cycles

≥ 120 usec
MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10 177

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

Chapter 9 Reset and Initialization

, a Cold
Figure 9-2 Cold Reset Sequence

9.3.3 Warm Reset Sequence

The sequence for a Warm Reset (also called Soft Reset) is as follows:

1. SI_Reset is asserted.

2. SI_Reset may be deasserted after a minimum of 10SI_ClkIn cycles.

Note: During a Warm Reset sequence, none of the configuration parameters can be changed. If that is required
Reset sequence must be performed. The SR bit in the Status Register will be set following a Warm Reset.

Figure 9-3 Warm Reset Sequence

>= 5 SI_ClkIns

>= 120 µsec

Vdd
VddP

SI_ClkIn

SI_VddOk

EJ_JTxxx

SI_ColdReset

SI_Reset

SI_BigEndian
SI_CkRatio[2:0]
SI_PLLBypass
EB_SysBus32

Vdd
VddP

SI_VddOk
SI_ColdReset

SI_ClkIn

SI_Reset

>= 10 SI_ClkIn
178 MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

ement,

L and
 of these

ing on

 logic
the
or is
atch,
 returns

equency

e). As
er, but

ndle
 Sleep
Chapter 10

Power Management

The 20Kc core offers a number of power management features, including low-power design, active power manag
and two power-down modes of operation.

This chapter contains the following sections:

• Section 10.1, "Register-Controlled Power Management"

• Section 10.2, "Instruction-Controlled Power Management"

10.1 Register-Controlled Power Management

This section describes register-controlled power management or Doze mode. The RP bit in the CP0Status register
provides a standard software mechanism for placing the system into a low power state. Two additional bits, EX
ERL, support the power management function by allowing the power state to be changed based on the setting
bits in the CP0 register if an exception or error occurs while the processor is in a low power state.

If an interrupt is taken while the device is in power down mode, that interrupt might need to be serviced depend
the needs of the application. The interrupt causes an exception which in turn causes the EXL bit to be set.

The core is placed in low-power mode by writing a logic one to the RP status bit. The internal clock generation
reduces the core clock frequency to the system clock frequency at the next system clock rising edge. While in
low-power state, the processor maintains PLL lock. With the exception of the core clock frequency, the process
functioning normally. The internal timer continues to run but at the lower clock frequency. Instruction fetch, disp
and execution continue. However, if the processor detects an exception, the clock generation logic temporarily
the core clock to normal frequency until the exception has been cleared.

Low-power mode is exited by asserting any interrupt pin, assertingSI_Reset, or writing a logic zero to the RP bit. Upon
detecting any one of the above conditions, the processor increases the core clock frequency to the system clock fr
multiplied by the clock ratio. This event occurs at the next system clock rising edge.

10.2 Instruction-Controlled Power Management

The second mechanism for invoking power-down mode is through execution of the WAIT instruction (Sleep mod
in Doze mode, the internal core clock frequency is reduced to that of the system clock frequency to reduce pow
the pipeline is frozen so no further instructions are executed.

However, the internal timer still runs (at this reduced frequency), and the Bus Interface Unit (BIU) is still active to ha
interrupts as well as other bus transactions, including cache interventions and invalidations. Once the core is in
mode, any unmasked interrupt or reset caused by the following pins (SI_Int[5:0], SI_NMI, SI_Reset, SI_ColdReset, and
EJ_DINT) causes the core to exit this state and resume normal operation.
MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10 179

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

Chapter 10 Power Management
180 MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

ocessor

abilities

e, and
ture for

G Test
Chapter 11

EJTAG Debug Support

This chapter describes the Enhanced Joint Test Action Group (EJTAG) debug features supported by the 20Kc pr
and contains the following sections:

• Section 11.1, "EJTAG Components and Options"

• Section 11.2, "Register and Memory Map Overview"

• Section 11.3, "EJTAG Processor Core Extensions"

• Section 11.4, "Debug Control Register"

• Section 11.5, "Hardware Breakpoints"

• Section 11.6, "EJTAG Test Access Port"

EJTAG is a hardware/software subsystem that provides comprehensive debugging and performance tuning cap
to MIPS microprocessors and to system-on-a-chip components having MIPS processor cores. It exploits the
infrastructure provided by the IEEE 1149.1 JTAG Test Access Port (TAP) standard to provide an external interfac
extends the MIPS instruction set and privileged resource architectures to provide a standard software architec
integrated system debugging.

For more information on EJTAG and the IEEE 1149.1 standard, refer to Ref [1] and Ref [4].

11.1 EJTAG Components and Options

EJTAG hardware support consists of several distinct components: extensions to the 20Kc processor, the EJTA
Access Port, the Debug Control Register, and the Hardware Breakpoint Unit.Figure 11-1shows the relationship between
these components in the 20Kc EJTAG implementation.
MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10 181

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

Chapter 11 EJTAG Debug Support

gle-step
cution,

. It
able to

ware
only in
Figure 11-1 Simplified Block Diagram of EJTAG Components

11.1.1 EJTAG Extensions to the MIPS Processor Core

The 20Kc processor supports EJTAG-specific instructions, additional system coprocessor (CP0) registers, a sin
mode of execution, and vectoring to Debug Exceptions, which puts the processor in a special Debug Mode of exe
as described inSection 11.3, "EJTAG Processor Core Extensions".

11.1.2 Debug Control Register

The Debug Control Register (DCR) is a memory-mapped register that is provided as part of the processor core
indicates the availability and status of EJTAG features. The memory-mapped region containing the DCR is avail
software only in Debug Mode.

Refer toSection 11.4, "Debug Control Register" for more information on the DCR.

11.1.3 Hardware Breakpoint Unit

The hardware breakpoint unit implements memory-mapped registers that control the instruction and data hard
breakpoints. The memory-mapped region containing the hardware breakpoint registers is accessible to software
Debug Mode.

The 20Kc core provides the following hardware breakpoint support:

• Four independent instruction hardware breakpoints

• Two independent data hardware breakpoints

MMU

Cache
Controller

Hardware
Breakpoint

(TLB)
Bus Interface

Debug Control
Interrupt and NMI

PC
ADDR

Debug
exception

control, etc.

ASID
TYPE
BYTELANE
DATA

EJTAG
TAP TAP

Memory

DINT

System
Interface

dmseg/drseg

Probe enable indication

Debug exception control, debug interrupt request etc.

Debug interrupt request

Unit (BIU)

Register (DCR)

Non-EJTAG features EJTAG features

Unit

access
bus
182 MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

11.2 Register and Memory Map Overview

ary for
 EJTAG

detailed

executed
egisters

ssible by
s debug
nd in
The presence or absence of hardware breakpoint capability is indicated to debug software in the DCR. Refer toSection
11.5, "Hardware Breakpoints" for more information on hardware breakpoints.

11.1.4 EJTAG Test Access Port

The EJTAG Test Access Port (TAP) provides a standard JTAG TAP interface to the EJTAG system. It is necess
host-based debugging and processor access to external debug memory. The presence or absence of off-board
memory is indicated to debug software via the Debug Control Register (DCR). Refer toSection 11.6, "EJTAG Test
Access Port" for more information on the TAP.

11.2 Register and Memory Map Overview

This section summarizes the registers and special memory that are used for the EJTAG debug solution. More
information regarding these registers and memory locations is provided in the relevant sections.

11.2.1 Coprocessor 0 Register Overview

Table 11-1summarizes the Coprocessor 0 (CP0) registers. These registers are accessible by the debug software
on the processor; they provide debug control and status information. General information about the debug CP0 r
is found inSection 11.3.10, "EJTAG Coprocessor 0 Registers".

11.2.2 Memory-Mapped EJTAG Register Overview

The memory-mapped EJTAG registers are located in the drseg part of the debug segment (dseg). They are acce
the debug software when the processor is executing in Debug Mode. These registers provide both miscellaneou
control and control of hardware breakpoints. General information about the debug segment and registers is fou
Section 11.3.3, "Debug Mode Address Space" andSection 11.3.3.2, "Access to drseg (EJTAG Registers) Address
Range".

11.2.2.1 Debug Control Register Overview

Table 11-2 summarizes the Debug Control Register (DCR), which provides miscellaneous debug control.

Table 11-1 Overview of Coprocessor 0 Registers for EJTAG

Register Name
Register

Mnemonic Functional Description

Debug DEBUG Debug indications and controls for the processor,
including information about recent debug exception.

Debug Exception
Program Counter DEPC Program counter at last debug exception or exception in

Debug Mode.

Debug Exception Save DESAVE Scratchpad register available for the debug handler.

Table 11-2 Overview of Debug Control Register as Memory-Mapped Register for EJTAG

Register Name
Register

Mnemonic Functional Description Reference

Debug Control Register DCR
Indicates availability of instruction and data value
breakpoints and controls the enabling of interrupts and
NMIs in Non-Debug Mode.

SeeSection 11.4, "Debug
Control Register"
MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10 183

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

Chapter 11 EJTAG Debug Support

nt, as

ped
“n”.
11.2.2.2 Instruction Hardware Breakpoint Register Overview

Table 11-3 summarizes the instruction hardware breakpoint registers, which are controlled through a number of
memory-mapped registers. Certain registers are provided for each implemented instruction hardware breakpoi
indicated with an “n”. General information about the instruction hardware breakpoint registers is found inSection
11.5.2, "Overview of Instruction and Data Breakpoint Registers".

11.2.3 Data Hardware Breakpoint Register Overview

Table 11-4 summarizes the data hardware breakpoints, which are controlled through a number of memory-map
registers. Certain registers are provided for each implemented data hardware breakpoint, as indicated with an
General information about the data hardware breakpoint registers is found inSection 11.5.7, "Data Breakpoint
Registers".

Table 11-3 Overview of Instruction Hardware Breakpoint Registers

Register Name
Register

Mnemonic Functional Description Reference

Instruction Breakpoint
Status IBS Indicates number of instruction hardware breakpoints

and status on a previous match.

SeeSection 11.5.6.1, "Instruction
Breakpoint Status (IBS)
Register"

Instruction Breakpoint
Address n IBAn Address to compare for breakpoint n.

SeeSection 11.5.6.2, "Instruction
Breakpoint Address n (IBAn)
Register"

Instruction Breakpoint
Address Mask n IBMn Mask for address comparison for breakpoint n.

SeeSection 11.5.6.3, "Instruction
Breakpoint Address Mask n
(IBMn) Register"

Instruction Breakpoint
ASID n IBASIDn ASID value to compare for breakpoint n.

SeeSection 11.5.6.4, "Instruction
Breakpoint ASID n (IBASIDn)
Register"

Instruction Breakpoint
Control n IBCn Control of breakpoint n comparison of ASID and

generated event on match.

SeeSection 11.5.6.5, "Instruction
Breakpoint Control n (IBCn)
Register"

Table 11-4 Overview of Data Hardware Breakpoint Registers

Register Name
Register

Mnemonic Functional Description Reference

Data Breakpoint Status DBS Indicates number of data hardware breakpoints and
status on a previous match.

SeeSection 11.5.7.1, "Data
Breakpoint Status (DBS)
Register"

Data Breakpoint Address
n DBAn Address to compare for breakpoint n.

SeeSection 11.5.7.2, "Data
Breakpoint Address n (DBAn)
Register"

Data Breakpoint Address
Mask n DBMn Mask for address comparison for breakpoint n.

SeeSection 11.5.7.3, "Data
Breakpoint Address Mask n
(DBMn) Register"

Data Breakpoint ASID n DBASIDn ASID value to compare for breakpoint n.
SeeSection 11.5.7.4, "Data
Breakpoint ASID n (DBASIDn)
Register"

Data Breakpoint Control n DBCn
Control of breakpoint n match on load/store, data bytes,
access to data bytes, comparison of ASID, and
generated event on match.

SeeSection 11.5.7.5, "Data
Breakpoint Control n (DBCn)
Register"
184 MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

11.2 Register and Memory Map Overview

ftware
through

ory was

rmation
11.2.3.1 Memory-Mapped EJTAG Memory Overview

The memory-mapped EJTAG memory is located in the debug segment (dseg). It is accessible by the debug so
when the processor is executing in Debug Mode. All accesses to this segment are handled by the EJTAG probe
the Test Access Port (TAP), whereby the processor has access to dedicated debug memory even if no debug mem
originally located in the system. General information about the debug segment and memory is found inSection 11.3.3,
"Debug Mode Address Space" andSection 11.3.3.1, "Access to dmseg (EJTAG Memory) Address Range".

11.2.3.2 EJTAG Test Access Port Registers

The probe accesses EJTAG Test Access Port (TAP) registers (shown inTable 11-5) through the TAP; they are not
accessible from the processor. These registers allow control of the target processor through the TAP. General info
about the TAP registers is found inSection 11.6.5, "Data Registers".

Data Breakpoint Value n DBVn Data value to match for breakpoint n.
SeeSection 11.5.7.6, "Data
Breakpoint Value n (DBVn)
Register"

Table 11-5 Overview of Test Access Port Registers

Register Name
Register

Mnemonic Functional Description Reference

Instruction (none)
Controls selection of the accessed data registers and
controls setting and clearing of the EJTAGBOOT
indication.

SeeSection 11.6.4, "Instruction Register
and Special Instructions"

Device ID (none) Identifies device and accessed processor in the
device.

SeeSection 11.6.5.1, "Device
Identification (ID) Register (TAP
Instruction IDCODE)"

Implementation (none) Identifies main debug features implemented and
accessible through the TAP.

SeeSection 11.6.5.2, "Implementation
Register (TAP Instruction IMPCODE)"

Data (none) Data register for processor accesses used to support
the EJTAG memory.

SeeSection 11.6.5.3, "Data Register (TAP
Instruction DATA or ALL)"

Address (none) Address register for processor access used to support
the EJTAG memory.

SeeSection 11.6.5.4, "Address Register
(TAP Instruction ADDRESS or ALL)"

EJTAG Control ECR Control register for most EJTAG features used
through the TAP.

SeeSection 11.6.5.5, "EJTAG Control
Register (ECR) (TAP Instruction
CONTROL or ALL)"

Fastdata (none) Provides efficient block transfers between dmseg and
target memory.

SeeSection 11.6.5.8, "Fastdata Register
(TAP Instruction FASTDATA)"

Bypass (none) Provides a one-bit shift path through the TAP.
SeeSection 11.6.5.9, "Bypass Register
(TAP Instruction BYPASS, EJTAGBOOT,
NORMALBOOT or Unused)"

Table 11-4 Overview of Data Hardware Breakpoint Registers (Continued)

Register Name
Register

Mnemonic Functional Description Reference
MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10 185

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

Chapter 11 EJTAG Debug Support

lsewhere
 more

ruction

gisters as
ddressing
lities

Mode.
ebug

emory
eg is
11.2.4 Register Field Notations

Usual field notation is used in the registers, butTable 11-6 defines the addition of R/W0 and R/W1.

11.3 EJTAG Processor Core Extensions

This section gives an overview of the processor’s EJTAG debug behavior. Some of these features are described e
in this manual, in which case cross references are used. Some information is also duplicated in order to give a
complete view of the debug features. The extensions for EJTAG provide the following major features:

• Debug Mode, associated exceptions and dedicated debug vector

• Instruction set extensions: SDBBP (Software Debug Breakpoint) and DERET (Debug Exception Return)

• CP0 registers:Debug, DEPC, andDESAVE

• Memory-mapped debug segment (dseg)

• Interrupt and NMI control from Debug Control Register (DCR)

• Single step

• Debug interrupt request signal

11.3.1 Debug Mode Execution

Debug Mode is entered only through a debug exception. It is exited as a result of either execution of a DERET inst
or application of a reset or soft reset.

When the processor is operating in Debug Mode it has access to the same resources, instructions, and CP0 re
in Kernel Mode. Restrictions on Kernel Mode access (non-zero coprocessor references, access to extended a
controlled by UX, SX, KX, etc.) apply equally to Debug Mode, but Debug Mode provides some additional capabi
as described in this chapter.

Other processor modes (Kernel Mode, Supervisor Mode, User Mode) are collectively considered as Non-Debug
Debug software can determine if the processor is in Non-Debug Mode or Debug Mode through the DM bit in the D
register, or theEJ_DebugM port as described inChapter 8, “Bus Interface Unit.”

11.3.2 Debug Mode Instruction Set

The full native ISA of the processor is accessible in Debug Mode. Coprocessor loads and stores to the dseg m
segment are not supported. The operation of the processor is UNDEFINED if a coprocessor load or store to ds
executed in Debug Mode. Refer toSection 11.3.3, "Debug Mode Address Space" for more information on the dseg
address space.

Table 11-6 Register Field Read/Write Notations

Read/Write
Notation Hardware Interpretation Software Interpretation

R/W0 Similar to the R/W interpretation, except a software write of value 1 to this bit is ignored.

R/W1 Similar to the R/W interpretation, except a software write of value 0 to this bit is ignored.
186 MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

11.3 EJTAG Processor Core Extensions

sible as in
sible,

atibility

" on

e"

ception

t routines.

seg
11.3.3 Debug Mode Address Space

Debug Mode access to unmapped address space is identical to that of Kernel Mode. Mapped areas are acces
Kernel Mode, but only if a valid translation is possible immediately by the MMU. If a valid translation is not pos
a TLB exception is generated, but the TLB fill sequence is not started.

In addition, an optional unmapped debug segment dseg (EJTAG area) appears in the address range
0xFFFF FFFF FF20 0000 to 0xFFFF FFFF FF3F FFFF. The dseg thereby appears in the kseg3 part of the comp
segment, and access to kseg3 is possible with dseg provided as described inSection 11.3.3.1, "Access to dmseg (EJTAG
Memory) Address Range" on page 188 andSection 11.3.3.2, "Access to drseg (EJTAG Registers) Address Range
page 188. Access to dseg is uncached and unmapped.

The presence of the dseg is indicated by the DebugNoDCR, and debug software must check the DebugNoDCR bit before
trying to access the dseg segment.

Conditions for access to dseg are described inSection 11.3.3.1, "Access to dmseg (EJTAG Memory) Address Rang
andSection 11.3.3.2, "Access to drseg (EJTAG Registers) Address Range". Refer to Ref [1] for more information on the
layout of the virtual address space.

A memory access that causes an exception if tried from Kernel Mode causes re-entry into Debug Mode by an ex
while in Debug Mode (seeSection 11.3.6.3, "Debug Mode Exception Processing" on page 195). These accesses include
those that cause TLB exceptions. Such accesses therefore are not handled by the usual memory managemen
Coprocessor loads and stores to dseg are not allowed, as described inSection 11.3.2, "Debug Mode Instruction Set" on
page 186. Updating and handling of cached areas is the same as that in Kernel Mode.

The dseg segment is subdivided into the dmseg (EJTAG memory) segment from 0xFFFF FFFF FF20 0000 to
0xFFFF FFFF FF2F FFFF and the drseg (EJTAG registers) segment from 0xFFFF FFFF FF30 0000 to
0xFFFF FFFF FF3F FFFF. The dmseg segment is used when the probe services the memory segment. The dr
segment is used when the memory-mapped debug registers are accessed.Table 11-8shows the subdivision and attributes
for the segments.

Table 11-7 Presence of dseg Segment

NoDCR bit in Debug Register dseg Presence

0 dseg is present

1 No dseg is present

Table 11-8 Physical Address and Cache Attribute for dseg, dmseg, and drseg

Segment
Name

Subsegment
Name Virtual Address Reference Address

Cache
Attribute

dseg

dmseg
0xFFFF FFFF FF20 0000

 to
0xFFFF FFFF FF2F FFFF

Because the dseg address range is
serviced exclusively by the EJTAG
features, there are no physical addresses
per se. Rather the lower 21 bits of the
virtual address are used to select the
appropriate reference in either EJTAG
memory or registers.

References are not mapped through the
TLB, nor do the accesses appear on the
external system memory interface.

Uncached

drseg
0xFFFF FFFF FF30 0000

 to
0xFFFF FFFF FF3F FFFF
MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10 187

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

Chapter 11 EJTAG Debug Support

 system
rminated.

re must
ces
eference
een the

soft reset.

ries to

g

There are no timing requirements with respect to transactions to dmseg, which the probe services. Therefore a
watchdog must be disabled during dseg transactions, so accesses can take any amount of time without being te

11.3.3.1 Access to dmseg (EJTAG Memory) Address Range

Table 11-9 shows the behavior of processor accesses in Debug Mode to the dmseg address range from
0xFFFF FFFF FF20 0000 to 0xFFFF FFFF FF2F FFFF.

FromTable 11-9, the cases with ProbEn equal to 0 for dmseg accesses are not expected to happen. Debug softwa
read the state of the ProbEn bit in theDCRregister before attempting to reference dmseg. If debug software referen
dmseg when ProbEn is 0, the reference hangs until it is satisfied by the probe. The probe must not assume that a r
to dmseg never occurs when the ProbEn bit is dynamically cleared to 0, because there is an inherent race betw
debug software sampling the ProbEn bit as 1 and the probe clearing it to 0.

The protocol for accesses to dmseg does not allow a transaction to be aborted once started, except by a reset or
Transactions of all sizes are allowed to dmseg.

11.3.3.2 Access to drseg (EJTAG Registers) Address Range

Table 11-10 shows the behavior of processor accesses in Debug Mode to the drseg address range from
0xFFFF FFFF FF30 0000 to 0xFFFF FFFF FF3F FFFF.

Instruction fetches from drseg are not allowed. The operation of the processor is UNDEFINED if the processor t
fetch from drseg.

When the NoDCR bit is 0 in theDebug register it indicates that the processor is allowed to access the entire drse
segment, therefore all transactions to drseg are responded to.

TheDCRregister, at offset 0x0000 in drseg, is always available. Debug software is expected to read theDCRregister to
determine if the hardware breakpoint registers exist in drseg. The value returned in response to a read of any

Table 11-9 Access to dmseg Address Range

LSNM bit in
Debug Register

ProbEn bit in
DCR register Transaction Access

1 x Load/Store Kernel Mode address space

x 1 Fetch
dmseg

0 1 Load/Store

x 0 Fetch See comments below regarding
behavior when ProbEn is 00 0 Load/Store

‘x’ denotes don’t care

Table 11-10 Access to drseg Address Range

LSNM bit in
Debug Register Transaction Access

1
Load/Store

Kernel Mode address space

0 drseg (see comments below the table)

x Fetch Operation of the processor is UNDEFINED at fetch

‘x’ denotes don’t care
188 MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

11.3 EJTAG Processor Core Extensions

gister

 Mode.
lated

usable
e

d in

LLbit

ug Mode

re handled
unimplemented memory-mapped register is UNPREDICTABLE, and writes are ignored to any unimplemented re
in drseg.

Only doubleword size transactions are allowed for drseg. Operation of the processor is UNDEFINED for other
transaction sizes.

11.3.4 Debug Mode Handling of Processor Resources

Unless otherwise specified, the processor resources in Debug Mode are handled identically to those in Kernel
Some identical cases are described in the following subsections for emphasis. In addition, see the following re
sections for more information:

• Section 11.3, "EJTAG Processor Core Extensions" covering exception handling in Debug Mode.

• Section 11.3.7, "Interrupts and NMIs" for handling in both Debug and Non-Debug Modes.

• Section 11.3.8, "Reset and Soft Reset of the Processor" for handling in both Debug and Non-Debug Modes.

11.3.4.1 Coprocessors

A Debug Mode Coprocessor Unusable exception is raised under the same conditions as for a Coprocessor Un
exception in Kernel Mode (seeSection 11.3.5, "Debug Exceptions"). Therefore Debug Mode software cannot referenc
Coprocessors 1 through 3 without first setting the respective enable in theStatus register.

11.3.4.2 Random Register

TheRandom register is not frozen in Debug Mode.

11.3.4.3 Count Register

TheCount register is not frozen in Debug Mode.

11.3.4.4 WatchLo/WatchHi Registers

TheWatchLo/WatchHi registers (CP0 Registers 18 and 19) are prohibited from matching any instruction execute
Debug Mode.

11.3.4.5 LL / SC Instruction Pair

A DERET instruction does not clear the LLbit. Neither does the occurrence of a debug exception. The value of the
is not directly visible by software. For more information on the DERET instruction, refer to Ref [1].

11.3.5 Debug Exceptions

This section describes issues related to debug exceptions. Debug exceptions force the processor from Non-Deb
into Debug Mode.

Exceptions can occur in Debug Mode, and these are denoted as debug mode exceptions. These exceptions a
differently from exceptions that occur in Non-Debug Mode, and are described inSection 11.3.5.3, "General Debug
Exception Processing".
MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10 189

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

Chapter 11 EJTAG Debug Support

ntrol

te

ction

eed to

urs (see

on or an
11.3.5.1 Debug Exception Priorities

Refer toTable 5-1 on page 60 for a detailed description of exception priorities.

11.3.5.2 Debug Exception Vector Location

The same debug exception vector location is used for all debug exceptions. The ProbTrap bit in the EJTAG Co
Register (ECR) in the Test Access Port (TAP) determines the vector location.

11.3.5.3 General Debug Exception Processing

All debug exceptions have the same basic processing flow:

• TheDEPC register is loaded with the PC at which execution can be restarted, and the DBD bit is set to indica
whether the last debug exception occurred in a branch delay slot. The value loaded into theDEPC register is either
the current PC (if the instruction is not in the delay slot of a branch) or the PC of the branch or jump (if the instru
is in the delay slot of a branch or jump).

• The DSS, DBp, DDBL, DDBS, DIB, DINT, DDBLImpr, and DDBSImpr bits in theDebug register are updated
appropriately depending on the debug exception.

• DExcCode field in theDebug register is undefined.

• Halt and Doze bits in theDebug register are updated appropriately.

• IEXI bit is set to inhibit imprecise exceptions at the start of the debug handler.

• DM bit in theDebug register is set to 1.

• The processor begins fetching instructions from the debug exception vector.

The value loaded into theDEPC register represents the restart address from the debug exception and does not n
be modified by the debug exception handler software. Debug software need only look at the DBD bit in theDebug
register if it wishes to identify the address of the instruction that actually caused a precise debug exception.

The DSS, DBp, DDBL, DDBS, DIB, DINT, DDBLImpr, and DDBSImpr bits in theDebug register indicate the
occurrence of distinct debug exceptions, except when a Debug Data Break Load/Store Imprecise exception occ
sectionSection 11.5.4.3, "Imprecise Debug Exception Caused by Data Breakpoint"). Note that occurrence of an
exception while in Debug Mode clears these bits. The handler can thereby determine whether a debug excepti
exception in Debug Mode occurred.

No other CP0 registers or fields are changed due to the debug exception, thus no additional state is saved.

The overall exception processing flow is shown below:

Operation:

if (InstructionInBranchDelaySlot) then
DEPC ← BranchInstructionPC
DebugDBD ← 1

else
DEPC ← PC

Table 11-11 Debug Exception Vector Locations

ProbTrap Bit in ECR Register Debug Exception Vector Address

0 0xFFFF FFFF BFC0 0480

1 0xFFFF FFFF FF20 0200 in dmseg
190 MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

11.3 EJTAG Processor Core Extensions

ation

ruction.
are

ddress of

store
emory
DebugDBD ← 0
endif
DebugDSS, DBp, DDBL, DDBS, DIB, DINT, DDBLImpr and DDBSImpr ← DebugExceptionType
DebugDExcCode ← UNPREDICTABLE
DebugHalt ← Halt StatusAt Debug Exception
DebugDoze ← Doze StatusAt Debug Exception
DebugIEXI ← 1
DebugDM ← 1
if ECR ProbTrap = 1 then

PC ← 0xFFFF FFFF FF20 0200
else

PC ← 0xFFFF FFFF BFC0 0480
endif

11.3.5.4 Debug Breakpoint Exception

A Debug Breakpoint exception occurs when an SDBBP instruction is executed. The contents of theDEPCregister and
the DBD bit in theDebugregister indicate that the SDBBP instruction caused the debug exception. For more inform
on the SDBBP instruction, refer to Ref [1].

Debug Register Debug Status Bit Set

DBp

Additional State Saved

None

Entry Vector Used

Debug exception vector

11.3.5.5 Debug Instruction Break Exception

A Debug Instruction Break exception occurs when an instruction hardware breakpoint matches an executed inst
The DEPC register and DBD bit in the Debug register indicate the instruction that caused the instruction hardw
breakpoint match.

Debug Register Debug Status Bit Set

DIB

Additional State Saved

None

Entry Vector Used

Debug exception vector

11.3.5.6 Debug Data Break Load/Store Precise Exception on Address

A Debug Data Break Load/Store exception occurs when a data hardware breakpoint matches the load/store a
an executed load/store instruction. TheDEPC register and DBD bit in theDebug register indicate the load/store
instruction that caused the data hardware breakpoint to match, as this is a precise debug exception. The load/
instruction that caused the debug exception has not completed (it has not updated the destination register or m
location), and the instruction therefore is executed on return from the debug handler.

Debug Register Debug Status Bit Set

DDBL for a load instruction or DDBS for a store instruction
MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10 191

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

Chapter 11 EJTAG Debug Support

/store

oint to
ise
ve

on if the
xception

 for

a single
f a

next
ore this
tep,

xecuted

occurs
ception
-debug

causes
Additional State Saved

None

Entry Vector Used

Debug exception vector

11.3.5.7 Debug Data Break Load/Store Imprecise Exception on Data

A Debug Data Break Load/Store Imprecise exception occurs when a data hardware breakpoint matches a load
access of an executed load/store instruction. TheDEPC register and the DBD bit in theDebug register indicate an
instruction later in the execution flow instead of the load/store instruction that caused the data hardware breakp
match. The DDBLImpr/DDBSImpr bits in theDebug register indicate that a Debug Data Break Load/Store Imprec
exception occurred. The instruction that caused the Debug Data Break Load/Store Imprecise exception will ha
completed. It updates its destination register, and is not executed on return from the debug handler.

Imprecise debug exceptions from data hardware breakpoints are indicated together with another debug excepti
load/store transaction that made the data hardware breakpoint match did not complete until after another debug e
occurred. In this case, the other debug exception was the cause of entering Debug Mode, so theDEPC register and the
DBD bit in Debug register point to this instruction. DDBLImpr/DDBSImpr are set concurrently with the status bit
that debug exception.

Debug Register Debug Status Bit Set

DDBLImpr for a load instruction or DDBSImpr for a store instruction

Additional State Saved

None

Entry Vector Used

Debug exception vector

11.3.5.8 Debug Single Step Exception

When single-step mode is enabled, a Debug Single Step exception occurs each time the processor has taken
execution step in Non-Debug Mode. An execution step is a single instruction, or an instruction pair consisting o
jump/branch instruction and the instruction in the associated delay slot. The SSt bit in theDebugregister enables Debug
Single Step exceptions. They are disabled on the first execution step after a DERET.

TheDEPCregister points to the instruction on which the Debug Single Step exception occurred, which is also the
instruction to execute when returning from Debug Mode. The debug software can examine the system state bef
instruction is executed. Thus theDEPCdoes not point to the instruction(s) that have just executed in the execution s
but points to the instruction following the execution step. The Debug Single Step exception never occurs on an
instruction in a jump/branch delay slot, because the jump/branch and the instruction in the delay slot are always e
in one execution step; thus the DBD bit in theDebug register is never set for a Debug Single Step exception.

Exceptions occurring on the instruction(s) in the execution step are taken regardless, so if a non-debug exception
(other than reset or soft reset), a Debug Single Step exception is taken on the first instruction in the non-debug ex
handler. The non-debug exception occurs during the execution step, and the instruction(s) that received a non
exception counts as the execution step.

Debug exceptions are unaffected by single-step mode; returning to an SDBBP instruction with single step enabled
a Debug Breakpoint exception with theDEPC register pointing to the SDBBP instruction.
192 MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

11.3 EJTAG Processor Core Extensions

ptions,

specific

when the

r clock

sup

s

tions

r (see
To ensure proper functionality of single-step execution, the Debug Single Step exception has priority over all exce
except resets and soft resets.

A Debug Single Step exception is only possible when the NoSSt bit in theDebugregister is 0.

Debug Register Debug Status Bit Set

DSS

Additional State Saved

None

Entry Vector Used

Debug exception vector

11.3.5.9 Debug Interrupt Exception

The Debug Interrupt exception is an asynchronous debug exception that is taken as soon as possible, but with no
relation to the executed instructions. TheDEPCregister and the DBD bit in theDebugregister reference the instruction
at which execution can be resumed after Debug Interrupt exception service.

Debug interrupt requests are ignored when the processor is in Debug Mode, and pending requests are cleared
processor takes any debug exception, including debug exceptions other than Debug Interrupt exceptions.

A debug interrupt restarts the pipeline if the pipeline was stopped by a WAIT instruction, or it restarts the processo
if the clock was stopped due to a low-power mode.

Debug Register Debug Status Bit Set

DINT

Additional State Saved

None

Entry Vector Used

Debug exception vector

 The following sources can cause Debug Interrupt exceptions:

• TheEJ_DINT signal from the probe can request a debug interrupt on a low (0) to high (1) transition. The DINT
bit in theImplementationregister in the Test Access Port (TAP) indicates that theEJ_DINTsignal from the probe to
the target processor is implemented.

• The EjtagBrk bit in theEJTAG Controlregister requests a Debug Interrupt exception when set (seeSection 11.6.5.5,
"EJTAG Control Register (ECR) (TAP Instruction CONTROL or ALL)"). This provides similar DINT functionality
from the probe, but with higher latency.

• The EJTAGBOOT feature allows a debug interrupt to be requested immediately after a reset or soft reset ha
occurred (seeSection 11.6.4.2, "EJTAGBOOT and NORMALBOOT Instructions").

11.3.6 Debug Mode Exceptions

The handling of exceptions generated in Debug Mode, other than reset and soft reset, differs from those excep
generated in Non-Debug Mode in that only theDebug andDEPC registers are updated. All other CP0 registers are
unchanged by an exception taken in Debug Mode. The exception vector is equal to the debug exception vecto
sectionSection 11.3.5.2, "Debug Exception Vector Location"), and the processor stays in Debug Mode.
MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10 193

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

Chapter 11 EJTAG Debug Support

locked.
e same

dress

rities,
Reset and soft reset are handled as when occurring in Non-Debug Mode (see sectionSection 11.3.8, "Reset and Soft
Reset of the Processor").

11.3.6.1 Exceptions Taken in Debug Mode

Only some Non-Debug Mode exception events cause exceptions while in Debug Mode. Remaining events are b
Exceptions occurring in Debug Mode have the same relative priorities as the Non-Debug Mode exceptions for th
exception event. These exceptions are called Debug Mode <Non-Debug Mode exception name>. For example, a Debug
Mode Breakpoint exception is caused by execution of a BREAK instruction in Debug Mode, and a Debug Mode Ad
Error exception is caused by an address error due to an instruction executed in Debug Mode.

Table 11-12lists all the Debug Mode exceptions with their corresponding non-debug exception event names, prio
and handling.

Table 11-12 Exception Handling in Debug Mode

Priority Event in Debug Mode Debug Mode Handling

Highest Reset Reset and soft reset handled
as for Non-Debug Mode, see
Section 11.3.8, "Reset and

Soft Reset of the Processor"Soft Reset

Debug Single Step

Blocked
Debug Interrupt

Debug Data Break Load/Store Imprecise

NMI

Machine Check Re-enter Debug Mode

Interrupt

Blocked
Deferred Watch

Debug Instruction Break, DIB

Watch on instruction fetch

Address error on instruction fetch

Re-enter Debug Mode

TLB refill on instruction fetch

TLB Invalid on instruction fetch

Cache error on instruction fetch

Bus error on instruction fetch

Debug Breakpoint; execution of SDBBP instruction
Re-enter Debug Mode as for

execution of the BREAK
instruction
194 MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

11.3 EJTAG Processor Core Extensions

a cache

can
 Debug
e

ontrolled

herwise

g flow:

in the
y
mp).
Exceptions that are blocked in Debug Mode are simply ignored, not causing updates in any state.

Handling of the exceptions causing Debug Mode re-entry are described below.

11.3.6.2 Exceptions on Imprecise Errors

Exceptions on imprecise errors are possible in Debug Mode. A bus error on an instruction fetch or data access or
error might occur.

The IEXI bit in theDebugregister blocks imprecise error exceptions on entry or re-entry into Debug Mode. This bit
be cleared by the debug exception handler once sufficient context has been saved to allow a safe re-entry into
Mode and the debug handler. The IEXI bit is cleared by execution of the DERET instruction due to an imprecis
exception.

Pending exceptions due to instruction fetch bus errors, data access bus errors, or cache errors are indicated and c
by the IBusEP, DBusEP, and CacheEP bits in theDebug register, respectively.

Those bits required to indicate the possible imprecise errors in an implementation are implemented as R/W, ot
they are read only.

11.3.6.3 Debug Mode Exception Processing

All exceptions that are allowed in Debug Mode (except for reset and soft reset) have the same basic processin

• TheDEPC register is loaded with the PC at which execution is restarted and the DBD bit is set appropriately
Debug register. The value loaded into theDEPCregister is either the current PC (if the instruction is not in the dela
slot of a branch or jump) or the PC of the branch or jump if the instruction is in the delay slot of a branch or ju

• The DSS, DBp, DDBL, DDBS, DIB, DINT, DDBLImpr, and DDBSImpr bits in theDebugregister are all cleared to
differentiate from debug exceptions where at least one of the bits are set.

• The DExcCode field in theDebug register is updated to indicate the type of exception that occurred.

• The Halt and Doze bits in theDebug register are UNPREDICTABLE.

• The IEXI bit is set to inhibit imprecise exceptions at the start of the debug handler.

• The DM bit in theDebug register is unchanged, leaving the processor in Debug Mode.

Lowest

Other execution-based exceptions Re-enter Debug Mode

Debug Data Break Load/Store address match only (precise debug data
break). Blocked

Watch on data access

Address error on data access

Re-enter Debug Mode

TLB Refill on data access

TLB Invalid on data access

TLB Modified on data access

Cache error on data access

Bus error on data access

Table 11-12 Exception Handling in Debug Mode

Priority Event in Debug Mode Debug Mode Handling
MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10 195

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

Chapter 11 EJTAG Debug Support

does
in the
ebug

ption

e
errors.

nterrupt
• The processor is started at the debug exception vector, specified inSection 11.3.5.2, "Debug Exception Vector
Location".

The value loaded into theDEPCregister represents the restart address for the exception; typically debug software
not need to modify this value at the location of the debug exception. Debug software need not look at the DBD bit
Debug register unless it wishes to identify the address of the instruction that actually caused the exception in D
Mode.

It is the responsibility of the debug handler to save the contents of theDebug, DEPC, andDESAVE registers before
nested entries into the handler at the debug exception vector can occur. The handler returns to the debug exce
handler by a jump instruction, not a DERET, in order to keep the processor in Debug Mode.

The cause of the exception in Debug Mode is indicated through the DExcCode field in theDebugregister, and the same
codes are used for the exceptions as those for the ExcCode field in theCauseregister when the exceptions with the sam
names occur in Non-Debug Mode, with addition of the code 30 (decimal) with the mnemonic CacheErr for cache

No other CP0 registers or fields are changed due to the exception in Debug Mode.

The overall processing flow for exceptions in Debug Mode is shown below:

Operation:

if (InstructionInBranchDelaySlot) then
DEPC ← Branch Instruction PC
DebugDBD ← 1

else
DEPC ← PC
DebugDBD ← 0

endif
DebugDSS, DBp, DDBL, DDBS, DIB, DINT, DDBLImpr and DDBSImpr ← 0
DebugDExcCode ← Debug Exception Type
DebugHalt ← UNPREDICTABLE
DebugDoze ← UNPREDICTABLE
DebugIEXI ← 1
if ECR ProbTrap = 1 then

PC ← 0xFFFF FFFF FF20 0200
else

PC ← 0xFFFF FFFF BFC0 0480
endif

11.3.7 Interrupts and NMIs

Interrupts and NMIs are handled as described in the following subsections.

11.3.7.1 Interrupts

Interrupts are requested through either asserted external hardware signals or internal software-controllable bits. I
exceptions are disabled when any of the following conditions are true:

• The processor is operating in Debug Mode

• The Interrupt Enable (IntE) bit in the Debug Control Register (DCR) is cleared (seeSection 11.4, "Debug Control
Register")

• Another mechanism disables the interrupt exception

A pending interrupt is indicated through the Cause register, even if Interrupt exceptions are disabled.
196 MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

11.3 EJTAG Processor Core Extensions

e NMI

quest

ifference
-Debug

curred.
ution of

ute the
OT is

probe.

atures.
11.3.7.2 NMIs

An NMI is requested on the asserting edge of the NMI signal to the processor, and an internal indicator holds th
request until the NMI exception is actually taken.

NMI exceptions are disabled when either of the following is true:

• The Processor is operating in Debug Mode

• The NMI Enable (NMIE) bit in the Debug Control Register (DCR) is cleared, seeSection 11.4, "Debug Control
Register"

If an asserting edge on the NMI signal to the core is detected while NMI exceptions are disabled, then the NMI re
is held pending and is deferred until NMI exceptions are no longer disabled. Then the NMI is taken.

A pending NMI is indicated in the NMIpend bit in theDCR even if NMI exceptions are disabled.

11.3.8 Reset and Soft Reset of the Processor

This section covers the handling of issues with respect to resets and soft resets. For EJTAG features, there is no d
between a reset and a soft reset occurring to the processor; they behave identically in both Debug Mode and Non
Mode.

11.3.8.1 EJTAGBOOT Feature

The EJTAGBOOT feature allows a debug interrupt to be requested immediately after a reset or soft reset has oc
The debug handler is executed at reset or soft reset through a Debug Interrupt exception, instead of through exec
the usual reset handler.

When EJTAGBOOT is indicated at reset or soft reset, it is possible to take a Debug Interrupt exception and exec
debug handler from the probe even if no instructions can be fetched from the reset handler. Control of EJTAGBO
described inSection 11.6.4.2, "EJTAGBOOT and NORMALBOOT Instructions".

11.3.8.2 Reset Occurred Indication through Test Access Port

The Rocc bit in the EJTAG Control register is set at both reset and soft reset in order to indicate the event to the
Refer toSection 11.6.5.5, "EJTAG Control Register (ECR) (TAP Instruction CONTROL or ALL)"for more information
on the EJTAG Control Register.

11.3.8.3 Reset of Other Debug Features

The operation of processor resets and soft resets also apply to resets of the following:

• Debug Control Register (DCR), seeSection 11.4, "Debug Control Register".

• Hardware Breakpoint, seeSection 11.5, "Hardware Breakpoints".

• Test Access Port (TAP) EJTAG Control Register, seeSection 11.6, "EJTAG Test Access Port".

11.3.9 EJTAG Instructions

The SDBBP and DERET instructions are added to the processor’s instruction set as part of the required EJTAG fe
Refer to Ref [1] for more information on the instructions.
MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10 197

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

Chapter 11 EJTAG Debug Support

er is

are
points.

upt can
ding
11.3.10 EJTAG Coprocessor 0 Registers

The Coprocessor 0 registers for EJTAG are shown inTable 11-13 with reference to further descriptions.

11.4 Debug Control Register

The Debug Control Register (DCR) controls and provides information about debug issues. The width of the regist
64 bits. TheDCR is located in the drseg at offset 0x0000.

The Debug Control Register (DCR) provides the following key features:

• Interrupt and NMI control when in Non-Debug Mode

• NMI pending indication

• Availability indicator of instruction and data hardware breakpoints

The DataBrk and InstBrk bits within theDCRindicate the types of hardware breakpoints implemented. Debug softw
is expected to read hardware breakpoint registers for additional information on the number of implemented break
Refer toSection 11.5, "Hardware Breakpoints" for descriptions of the hardware breakpoint registers.

Hardware and software interrupts can be disabled in Non-Debug Mode using theDCR IntE bit. This bit is a global
interrupt enable used along with several other interrupt enables that enable specific mechanisms. The NMI interr
be disabled in Non-Debug Mode using the NMIE bit; a pending NMI is indicated through the NMIpend bit. Pen
interrupts are indicated in theCause register, and pending NMIs are indicated in theDCR register NMIpend bit, even
when disabled. Hardware and software interrupts and NMIs are always disabled in Debug Mode.

The ProbEn bit reflects the state of the ProbEn bit from the EJTAG Control Register (ECR). Through this bit, the probe
can indicate to the debug software running on the CPU if it expects to service dmseg accesses.

Figure 11-2 shows the format of theDCR; Table 11-14 describes theDCR fields. The reset values inTable 11-14 take
effect on both hard resets and soft resets.

Figure 11-2 DCR Register Format

Table 11-13 Coprocessor 0 Registers for EJTAG

Register
Number Sel

Register
Name Function Reference

23 0 Debug Debug indications and controls for the processor
Refer toSection 6.1, "CP0
Register Summary" for more
information on this register.

24 0 DEPC Program counter at last debug exception or
exception in Debug Mode

Refer toSection 6.1, "CP0
Register Summary" for more
information on this register.

31 0 DESAVE Debug exception save register
Refer toSection 6.1, "CP0
Register Summary" for more
information on this register.

63 30 29 28 18 17 16 15 5 4 3 2 1 0

0 ENM 0 DataBrk InstBrk 0 IntE NMIE NMIpend SRstE ProbEn
198 MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

11.5 Hardware Breakpoints

esses.
eptions on
n parallel
11.5 Hardware Breakpoints

The hardware breakpoints compare addresses and data of executed instructions, including data load/store acc
Instruction breakpoints can be set on addresses even in ROM areas, and data breakpoints can cause debug exc
a specific data access. Instruction and data hardware breakpoints are alike in many aspects, and are described i

Table 11-14 DCR Register Field Descriptions

Fields

Description
Read/
Write Reset StateName Bits

ENM 29

Endianness in which the processor is running in kernel
and Debug Mode:

0: Little endian

1: Big endian

R Preset to endianness at
reset

DataBrk 17

Indicates if data hardware breakpoint is implemented:

0: No data hardware breakpoint implemented

1: Data hardware breakpoint implemented

R 1

InstBrk 16

Indicates if instruction hardware breakpoint is
implemented:

0: No instruction hardware breakpoint implemented

1: Instruction hardware breakpoint implemented

R 1

IntE 4

Hardware and software interrupt enable for Non-Debug
Mode, in conjunction with other disable mechanisms:

0: Interrupt disabled

1: Interrupt enabled depending on other enabling
mechanisms

R/W 1

NMIE 3

Non-Maskable Interrupt (NMI) enable for Non-Debug
Mode:

0: NMI disabled

1: NMI enabled

R/W 1

NMIpend 2

Indication for pending NMI:

0: No NMI pending

1: NMI pending

R 0

SRstE 1 Unused in the 20Kc processor. R 0

ProbEn 0

Indicates value of the ProbEn value in theECRregister:

0: No access should occur to dmseg

1: Probe services accesses to dmseg

Bit is read-only (R) and reads as zero if Test Access Port
(TAP) is not implemented.

R

Same value as ProbEn in
theECR. SeeSection
11.6.5.6, "EJTAGBOOT
Indication Determines
Reset Value of EjtagBrk,
ProbTrap, and ProbEn"for
more information.

0
63:30,
28:18,
15:5

Must be written as zeros; return zeros on reads. 0 0
MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10 199

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

Chapter 11 EJTAG Debug Support

 and

 These

M and
s also

ed for
at byte

ddress
 and
is

 access
value

n internal
ception
rigger
in the following sections. The term “hardware” is assumed to modify the word “breakpoint” in the following text,
is used only explicitly when required to distinguish it from a software breakpoint.

11.5.1 Introduction

There are four instruction hardware breakpoints and two data breakpoints implemented in the 20Kc processor.
breakpoints provide the following key features:

• Instruction hardware breakpoints are provided to cause debug exceptions on executed instructions, both in RO
RAM. Bit masking is provided for virtual address compares, and masking of compares with ASID (optional) i
provided.

• Data hardware breakpoints are provided to cause debug exceptions on data accesses. Bit masking is provid
virtual address compares, masking of compares with ASID is provided, data value compares allow masking
level, and qualification on byte access and access type is possible.

• Registers for setup and control are memory mapped in drseg, accessible in Debug Mode only.

Details of instruction and data breakpoints are provided in the following.

11.5.1.1 Instruction Breakpoint Feature

Figure 11-3shows an overview of the instruction hardware breakpoint feature. The feature compares the virtual a
(PC) and the ASID of the executed instructions with each instruction breakpoint, applying masking on address
ASID. When an enabled instruction breakpoint matches the PC and ASID, a debug exception and/or a trigger
generated, and an internal bit in an instruction breakpoint register is set to indicate that a match occurred.

Figure 11-3 Instruction Hardware Breakpoint Overview

11.5.1.2 Data Breakpoint Feature

Figure 11-4 shows an overview of the data hardware breakpoint feature. The feature compares the load or store
type (TYPE), the virtual address of the access (ADDR), the ASID, the accessed bytes (BYTELANE), and data
(DATA) with each data breakpoint, applying masks and/or qualifications on the access properties.

Figure 11-4 Data Hardware Breakpoint Overview

When an enabled data breakpoint matches, a debug breakpoint exception and/or a trigger is generated, and a
bit in a data breakpoint register is set to indicate that a match occurred. The match is either precise (the debug ex
or trigger occurs on the instruction that caused the breakpoint to match) or imprecise (the debug exception or t
occurs later in the program flow).

Instruction
Hardware
Breakpoint

Debug Exception

Trigger IndicationASID

PC

Data
Hardware
Breakpoint

TYPE

ASID
Debug Exception

Trigger Indication

ADDR

DATA

BYTELANE
200 MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

11.5 Hardware Breakpoints

t. If no
ature are

t
ory

 “n”.

cation
ters and
11.5.2 Overview of Instruction and Data Breakpoint Registers

The InstBrk and DataBrk bits in the DCR register indicate whether hardware breakpoints are implemented or no
hardware breakpoints are implemented, then none of the registers associated with the hardware breakpoint fe
implemented, otherwise the registers shown below are implemented.

Section 11.5.2.1, "Overview of Instruction Breakpoint Registers" andSection 11.5.2.2, "Overview of Data Breakpoin
Registers" provide overviews of the instruction and data breakpoint registers, respectively. All registers are mem
mapped in the drseg segment. All registers are 64 bits wide.

11.5.2.1 Overview of Instruction Breakpoint Registers

Table 11-15 lists the Instruction Breakpoint registers. The Instruction Breakpoint Status register provides
implementation indication and status for instruction breakpoints in general. The four implemented instruction
breakpoints are numbered 0 to 3 for registers and breakpoints. The specific breakpoint number is indicated by

Register addresses are shown inSection 11.5.6, "Instruction Breakpoint Registers".

11.5.2.2 Overview of Data Breakpoint Registers

Table 11-16lists the Data Breakpoint Registers. The Data Breakpoint Status register provides implementation indi
and status for data breakpoints in general. The two implemented data breakpoints are numbered 0 and 1 for regis
breakpoints. The specific breakpoint number is indicated by “n”.

Table 11-15 Instruction Breakpoint Register Summary

Register
Mnemonic Register Name and Description Reference

IBS Instruction Breakpoint Status SeeSection 11.5.6.1, "Instruction Breakpoint Status (IBS) Register"

IBAn Instruction Breakpoint Address n SeeSection 11.5.6.2, "Instruction Breakpoint Address n (IBAn)
Register"

IBMn Instruction Breakpoint Address Mask n SeeSection 11.5.6.3, "Instruction Breakpoint Address Mask n (IBMn)
Register"

IBASIDn Instruction Breakpoint ASID n SeeSection 11.5.6.4, "Instruction Breakpoint ASID n (IBASIDn)
Register"

IBCn Instruction Breakpoint Control n SeeSection 11.5.6.5, "Instruction Breakpoint Control n (IBCn)
Register"

Table 11-16 Data Breakpoint Register Summary

Register
Mnemonic Register Name and Description Reference

DBS Data Breakpoint Status SeeSection 11.5.7.1, "Data Breakpoint Status (DBS) Register"

DBAn Data Breakpoint Address n SeeSection 11.5.7.2, "Data Breakpoint Address n (DBAn) Register"

DBMn Data Breakpoint Address Mask n SeeSection 11.5.7.3, "Data Breakpoint Address Mask n (DBMn)
Register"

DBASIDn Data Breakpoint ASID n SeeSection 11.5.7.4, "Data Breakpoint ASID n (DBASIDn)
Register"

DBCn Data Breakpoint Control n SeeSection 11.5.7.5, "Data Breakpoint Control n (DBCn) Register"

DBVn Data Breakpoint Value n SeeSection 11.5.7.6, "Data Breakpoint Value n (DBVn) Register"
MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10 201

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

Chapter 11 EJTAG Debug Support

ccess.
ed in

n
n
eptions.
jump to
s from

re 0’s,
_match:

bits are

ing the
Register addresses are shown inSection 11.5.7, "Data Breakpoint Registers".

11.5.3 Conditions for Matching Breakpoints

A number of conditions must be fulfilled in order for a breakpoint to match on an executed instruction or a data a
These conditions are described in the following subsections. A breakpoint only matches for instructions execut
Non-Debug Mode, never due to instructions executed in Debug Mode.

The match of an enabled breakpoint generates a debug exception as described inSection 11.5.4, "Debug Exceptions from
Breakpoints"and a trigger indication as described inSection 11.5.5, "Breakpoints Used as Triggerpoints". The BE and
TE bits in theIBCn or DBCn registers enable the breakpoints for breaks and triggers, respectively.

11.5.3.1 Conditions for Matching Instruction Breakpoints

When an instruction breakpoint is enabled, that breakpoint is evaluated in Non-Debug Mode with the instructio
boundary address (the lowest address of a byte in the instruction) of every executed instruction. The instructio
breakpoint is also evaluated on addresses usually causing Address Error exception, TLB exception, or other exc
It is thereby possible to cause a Debug Instruction Break exception on the destination address of a jump, even if
that address would otherwise cause an Address Error exception. The breakpoint is not evaluated on instruction
speculative fetches or execution.

A match of an instruction breakpoint depends on a number of parameters, shown inTable 11-17. The fields in the
instruction breakpoint registers are in the form REGFIELD.

The equation that determines the match is shown below with “C” like operators. In the equation, 0 means all bits a
and ~0 means all bits are 1’s. The widths are similar to the widths of the parameters. The match equation is IB

IB_match =
(!IBCn ASIDuse ||(ASID==IBASIDn ASID))&&
((IBMn IBM|~(PC ^IBAn IBA))==~0)

The IB_match equation also applies to 64-bit processors running in 32-bit addressing mode, in which case all 64
compared between the PC and the IBAnIBA register.

The match indication for instruction breakpoints is always precise; that is, it is indicated on the instruction caus
IB_match to be true.

Table 11-17 Instruction Breakpoint Condition Parameters

Parameter Description Width

ASID ASID field in theEntryHi CP0 register. 8 bits

IBCnASIDuse

Use ASID value in compare for instruction breakpoint n:

0: Do not use ASID value in compare

1: Use ASID value in compare

1 bit

IBASIDnASID Conditional Instruction breakpoint n ASID value for comparing. 8 bits

PC Virtual address of instruction boundary or target for jump/branch. 64 bits

IBAnIBA Instruction breakpoint n address for compare with conditions. 64 bits

IBMnIBM

Instruction breakpoint n address mask condition:

0: Corresponding address bit compared

1: Corresponding address bit masked

64 bits
202 MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

11.5 Hardware Breakpoints

of every
g address
tructions.
11.5.3.2 Conditions for Matching Data Breakpoints

When a data breakpoint is enabled, that breakpoint is evaluated in Non-Debug Mode with the access address
data access due to load/store instructions (including loads/stores of coprocessor registers) and address causin
errors at data access. Data breakpoints are not evaluated with addresses from PREF (prefetch) or CACHE ins

A match of the data breakpoint depends on a number of parameters, shown inTable 11-18. The fields in the data
breakpoint registers are in the form REGFIELD.

Table 11-18 Data Breakpoint Condition Parameters

Reference Description Width

TYPE Data access type is either load or store. (no width)

DBCnNoSB

Controls whether condition for data breakpoint is fulfilled on a store access:

0: Condition can be fulfilled on store access

1: Condition is never fulfilled on store access

1 bit

DBCnNoLB

Controls whether condition for data breakpoint is fulfilled on a load access:

0: Condition can be fulfilled on load access

1: Condition is never fulfilled on load access

1 bit

ASID ASID field in theEntryHi CP0 register. 8 bits

DBCnASIDuse

ASID value used in compare for data breakpoint n:

0: Do not use ASID value in compare

1: Use ASID value in compare

1 bit

DBASIDnASID Conditional Data breakpoint n ASID value for comparison 8 bits

ADDR Virtual address of data access. 64 bits

DBAnDBA Data breakpoint n address for compare with conditions 64 bits

DBMnDBM

Conditional Data breakpoint n address mask:

0: Corresponding address bit compared

1: Corresponding address bit masked

64 bits

BYTELANE
Byte lane access indication, where BYTELANE[0] is 1 only if the byte at bits [7:0]
on the data bus is accessed, BYTELANE[1] is 1 only if the byte at bits [15:8] on
the data bus is accessed, etc.

8 bits

DBCnBAI

Determines whether access is ignored to specific bytes. BAI[0] ignores access to
byte at bits [7:0] of the data bus, BAI[1] ignores access to byte at bits [15:8] of the
data bus, etc.

0: Condition depends on access to corresponding byte

1: Access for corresponding byte is ignored

8 bits

DATA Data value from the data bus. 64 bits

DBVnDBV Conditional Data breakpoint n data value for compare 64 bits

DBCnBLM

Conditional Byte lane mask for value compare on data breakpoint. BLM[0] masks
byte at bits [7:0] of the data bus, BLM[1] masks byte at bits [15:8], etc.:

0: Compare corresponding byte lane

1: Mask corresponding byte lane

8 bits
MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10 203

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

Chapter 11 EJTAG Debug Support

 means

uations

e all 64

ta value
point if

e

sters for

is required

akpoint

e), but a
h in this

e match
The match equations are shown below with “C” like operators. In the equation, 0 means all bits are 0’s, and ~0
all bits are 1’s. The bit widths are similar to the widths of the parameters.

DB_match is the overall match equation (the DB_addr_match, DB_no_value_compare, and DB_value_match eq
in the DB_match equation are defined below):

DB_match =
(((TYPE==load)&&!DBCn NoLB)||((TYPE==store)&&!DBCn NoSB))&&
DB_addr_match&&(DB_no_value_compare||DB_value_match)

DB_addr_match is defined as:

DB_addr_match =
(!DBCn ASIDuse ||(ASID==DBASIDn ASID))&&
((DBMn DBM|~(ADDR^DBAnDBA))==~0)&&
((~DBCn BAI &BYTELANE)!=0)

The DB_addr_match equation also applies to 64-bit processors running in 32-bit addressing mode, in which cas
bits are compared between the ADDR and the DBAnDBA field.

DB_no_value_compare is defined as:

DB_no_value_compare =
((DBCn BLM|DBCnBAI |~BYTELANE)==~0)

If a data value compare is indicated on a breakpoint then DB_no_value_compare is false, and if there is no da
compare then DB_no_value_compare is true. Note that a data value compare is a run-time property of the break
(DBCnBLM | DBCnBAI) is not ~0, because DB_no_value_compare then depends on BYTELANE provided by th
load/store instructions.

If a data value compare is required, then the data value from the data bus is compared and masked with the regi
the data breakpoint, as shown in the DB_value_match equation:

DB_value_match =
((DATA[7:0]==DBVn DBV[7:0])||!BYTELANE[0]||DBCn BLM[0] ||DBCn BAI[0])&&
((DATA[15:8]==DBVn DBV[15:8])||!BYTELANE[1]||DBCn BLM[1] ||DBCn BAI[1])&&
......
((DATA[63:56]==DBVn DBV[63:56])||
!BYTELANE[7]||DBCn BLM[7] ||DBCn BAI[7])

Data breakpoints depend on endianness, because values on the byte lanes are used in the equations. Thus it
that the debug software programs the breakpoints accordingly to endianness.

Precise breakpoint exceptions only occur on stores and loads if there is no data value compare. An imprecise bre
exception only occurs on a data breakpoint on stores and loads with data value compare.

If a data value compare is required to evaluate a data breakpoint, (the DB_no_value_compare equation is fals
bus or cache error occurs on the load, then there is no valid data to use in the compare, and there will be no matc
case.

11.5.4 Debug Exceptions from Breakpoints

This subsection describes how to set up instruction and data breakpoints to generate debug exceptions when th
conditions are true.
204 MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

11.5 Hardware Breakpoints

ption

d

t cause
struction

he
e the
ftware

 the

se, the
uation

ta value
shown

ccess
11.5.4.1 Debug Exception Caused by Instruction Breakpoint

When the BE bit in theIBCn register is set, instruction breakpoints are enabled. A Debug Instruction Break exce
occurs when the IB_match equation is true (seeSection 11.5.3.1, "Conditions for Matching Instruction Breakpoints").
The corresponding BSn bit in theIBS register is set when the breakpoint generates the debug exception.

The Debug Instruction Break exception is precise, so theDEPCregister and DBD bit in theDebugregister point to the
instruction that caused the IB_match equation to be true. Refer toSection 11.5.4.2, "Precise Debug Exception Cause
by Data Breakpoint"

The instruction receiving the debug exception only updates the debug related registers. That instruction does no
any loads/stores to occur. Thus a debug exception from a data breakpoint cannot occur at the same time an in
receives a Debug Instruction Break exception.

The debug handler usually returns to the instruction causing the Debug Instruction Break exception, whereby t
instruction is executed. Debug software must disable the breakpoint when returning to the instruction, otherwis
Debug Instruction Break exception reoccurs. An alternative is for debug software to emulate the instructions in so
and change theDEPC accordingly.

11.5.4.2 Precise Debug Exception Caused by Data Breakpoint

The BE bit in theDBCn register must be set for data breakpoints to be enabled. A debug exception occurs when
DB_match condition is true (seeSection 11.5.3.2, "Conditions for Matching Data Breakpoints").

A Debug Data Break Load/Store exception occurs when a data breakpoint indicates a precise match. In this ca
DEPC register and DBD bit in the Debug register point to the load/store instruction that caused the DB_match eq
(seeSection 11.5.3.2, "Conditions for Matching Data Breakpoints") to be true, and the corresponding BSn bit in theDBS
register is set. For the 20Kc processor, these precise debug exceptions only occur for data breakpoints without da
compare on load and store instructions. Details about behavior of the instruction causing the debug exception is
in Table 11-19.

The rules shown inTable 11-20 describe update of the BSn bits when several data breakpoints match the same a
and generate a debug exception.

Table 11-19 Behavior on Precise Exceptions from Data Breakpoints

Data Breakpoint and
Instruction

Load/Store
Instruction Execution

Destination
Register External Memory System Access

Store without value match
Not completed

Not updated1

1. This applies to the Store Conditional Word (SC) instruction

Store to memory is not committed

Load without value match Not updated2

2. This includes side effects like for the Load Linked Word (LL) instruction

Load from memory does not occur

Table 11-20 Rules for Update of BSn Bits on Precise Exceptions from Data Breakpoints

Instruction

Breakpoints That Would Match Data Breakpoints and Update of BSn Bits

Without Value
Compare

With Value
Compare Without Value Compare With Value Compare

Load / Store One or more None BSn bits set for all Unchanged BSn bits
MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10 205

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

Chapter 11 EJTAG Debug Support

Sn bits.

hereby
ise the

 the

atch. In
rather
 debug

stination
xecuted

accesses
oth the
bug
a debug
then all
nerated

g two
lay

Sn bits.

nerate a
Any BSn bit set prior to the match and debug exception is kept set, because only debug software can clear the B

The debug handler usually returns to the instruction that caused the Debug Data Break Load/Store exception, w
the instruction is re-executed. Debug software must disable breakpoints when returning to the instruction, otherw
Debug Data Break Load/Store exception will reoccur.

11.5.4.3 Imprecise Debug Exception Caused by Data Breakpoint

The BE bit in theDBCn register must be set for data breakpoints to be enabled. A debug exception occurs when
DB_match condition is true (seeSection 11.5.3.2, "Conditions for Matching Data Breakpoints").

A Debug Data Break Load/Store Imprecise exception occurs when a data breakpoint indicates an imprecise m
this case, the DEPC register and DBD bit in the Debug register point to an instruction later in the execution flow
than at the load/store that caused the DB_match equation to be true. For the 20Kc processor, these imprecise
exceptions only occur for data breakpoints with data value compare on load and store instructions.

The load/store instruction causing the Debug Data Break Load/Store Imprecise exception always updates the de
register and finalizes the access to the external memory system. Therefore this load/store instruction is not re-e
at return from the debug handler, because the DEPC register and DBD bit do not point to that instruction.

Several imprecise data breakpoints can be pending at a given time, and the breakpoints are then evaluated as the
finalize, but a Debug Data Break Load/Store Imprecise exception is generated only for the first one matching. B
first and succeeding matches cause corresponding BSn bits and DDBLImpr/DDBSImpr bit to be set, but no de
exception is generated for succeeding matches because the processor is already in Debug Mode. Similarly, if
exception had already occurred at the time of the first match (for example, due to a precise debug exception),
matches cause the corresponding BSn bits and DDBLImpr/DDBSImpr bit to be set, but no debug exception is ge
because the processor is already in Debug Mode.

The debug handler is required to execute the SYNC instruction, followed by two cycles spacing (for example, usin
SSNOP instructions), before the BSn bits and DDBLImpr/DDBSImpr bit are accessed for read or write. This de
ensures that these bits are fully updated.

Any BSn bit set prior to the match and debug exception are kept set, because only debug software can clear the B

11.5.5 Breakpoints Used as Triggerpoints

Software can set up both instruction and data hardware breakpoints such that a matching breakpoint does not ge
debug exception, but sends an indication through the BSn bit only. The TE bit in theIBCn or DBCn register controls

Load One or more One or more BSn bits set for all

Unchanged BSn bits since
load of data value does not

occur, so match of the
breakpoint cannot be

determined

Load / Store None One or more Does not apply since these breakpoints are imprecise.

Store One or more One or more BSn bits set for all
Optional to either set BSn

bits for all, or change none of
the BSn bits

Table 11-20 Rules for Update of BSn Bits on Precise Exceptions from Data Breakpoints (Continued)

Instruction

Breakpoints That Would Match Data Breakpoints and Update of BSn Bits

Without Value
Compare

With Value
Compare Without Value Compare With Value Compare
206 MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

11.5 Hardware Breakpoints

atches

must

causing
e data
ror
ct. The

e
ctively,
ctive
whether an instruction or data breakpoint, respectively, is used as a triggerpoint. Triggerpoints are evaluated for m
under the same criteria as breakpoints.

The BSn bit in theIBS or DBS register is set for a triggerpoint when the respective IB_match condition (seeSection
11.5.3.1, "Conditions for Matching Instruction Breakpoints") or DB_match condition (seeSection 11.5.3.2, "Conditions
for Matching Data Breakpoints") is true.

For the BSn bit to be set for an instruction triggerpoint, either the instruction must be fully executed or an exception
occur on the instruction itself.

For the BSn bit to be set for a data triggerpoint it requires initiation of the data access, which includes accesses
an exception for example TLB or Bus Error exception. However, data triggerpoints with value compare requires th
value to be valid for the BSn bit to be set, which is not the case for a load instruction on which a TLB or Bus Er
exception occurs. Exceptions earlier in the pipe might inhibit the data access whereby the triggerpoint has no effe
rules for update of the BSn bits are shown inTable 11-21.

Data breakpoints with imprecise matches generate imprecise triggers when enabled by the TE bit.

11.5.6 Instruction Breakpoint Registers

This subsection describes the instruction breakpoint registers. These registers provide status and control for th
instruction breakpoints. All registers are in drseg. The four implemented breakpoints are numbered 0 to 3, respe
for registers and breakpoints. The specific breakpoint number is indicated by “n”. The registers and their respe
addresses offsets are shown inTable 11-22.

11.5.6.1 Instruction Breakpoint Status (IBS) Register

The Instruction Breakpoint Status (IBS) register holds implementation and status information about the instruction
breakpoints. It is located at drseg offset 0x1000. The ASIDsup bit applies to all instruction breakpoints.Figure 11-5
shows the format of theIBS register;Table 11-23 describes theIBS register fields.

Table 11-21 Rules for Update of BSn Bits on Data Triggerpoints

Instruction Without/With Value Compare BSn Bit Update for Triggerpoint

Load / Store Without value compare BSn bits are set if the data access is initiated, even if the data
access causes an exception.

Load With value compare BSn bits are set only if the load data value is returned and thus
not set if an exception causes the load access not to occur.

Store With value compare BSn bits are set if the data access occurs. The BSn bits are not
set if the data access causes a higher priority exception.

Table 11-22 Instruction Breakpoint Register Mapping

Offset in drseg
Register

Mnemonic Register Name and Description

0x1000 IBS Instruction Breakpoint Status

0x1100 + 0x100 * n IBAn Instruction Breakpoint Address n

0x1108 + 0x100 * n IBMn Instruction Breakpoint Address Mask n

0x1110 + 0x100 * n IBASIDn Instruction Breakpoint ASID n

0x1118 + 0x100 * n IBCn Instruction Breakpoint Control n
MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10 207

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

Chapter 11 EJTAG Debug Support

t n.
Figure 11-5 IBS Register Format

11.5.6.2 Instruction Breakpoint Address n (IBAn) Register

The Instruction Breakpoint Address n (IBAn) register has the address used in the condition for instruction breakpoin
It is located at drseg offset 0x1100 + 0x100 * n.Figure 11-6shows the format of theIBAnregister;Table 11-24describes
theIBAn register field.

Figure 11-6 IBAn Register Format

63 31 30 29 28 27 24 23 4 3 0

0 ASIDsup 0 BCN 0 BS[3:0]

Table 11-23 IBS Register Field Descriptions

Fields

Description
Read/
Write

Reset
StateName Bits

ASIDsup 30

Indicates if ASID compare is supported in instruction breakpoints:

0: No ASID compare

1: ASID compare (IBASIDn register implemented)

ASID support indication does not guarantee a TLB-type MMU,
because the same hardware breakpoint implementation can be
used with processors having all different types of MMUs.

R 1

BCN 27:24

Number of instruction breakpoints implemented:

0: Reserved

1-13: Number of instructions breakpoints

R 4

BS[3:0] 3:0

Break status for breakpoint n is at BSn, where n is 0 to 3. A bit is
set to 1 when the condition for its corresponding breakpoint has
matched.

The number of BS bits corresponds to the number of breakpoints
indicated by the BCN field.

Debug software is expected to clear the bits before use, because
reset does not clear these bits.

R/W0 Undefined

0
63:31,
29:28,
23:4

Must be written as zeros; return zeros on read. 0 0

63 0

IBAn

Table 11-24 IBAn Register Field Descriptions

Fields

Description
Read/
Write

Reset
StateName Bits

IBA 63:0 Instruction breakpoint address for condition. R/W Undefined
208 MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

11.5 Hardware Breakpoints

or

int,
11.5.6.3 Instruction Breakpoint Address Mask n (IBMn) Register

The Instruction Breakpoint Address Mask n (IBMn) register has the address compare mask used in the condition f
instruction breakpoint n. The address that is masked is in theIBAn register. TheIBMn register is located at drseg offset
0x1108 + 0x100 * n.Figure 11-7 shows the format of theIBMn register;Table 11-25 describes theIBMn register field.

Figure 11-7 IBMn Register Format

11.5.6.4 Instruction Breakpoint ASID n (IBASIDn) Register

The Instruction Breakpoint ASID n (IBASIDn) register has the ASID value used in the compare for instruction
breakpoint n. It is located at drseg offset 0x1110 + 0x100 * n.

Figure 11-8 shows the format of theIBASIDn register;Table 11-26 describes theIBASIDn register fields.

Figure 11-8 IBASIDn Register Format

11.5.6.5 Instruction Breakpoint Control n (IBCn) Register

The Instruction Breakpoint Control n (IBCn) register determines what constitutes instruction breakpoint n: triggerpo
breakpoint, ASID value inclusion. This register is located at drseg offset 0x1118 + 0x100 * n.Figure 11-9 shows the
format of theIBCn register;Table 11-26 describes theIBCn register fields.

Figure 11-9 IBCn Register Format

63 0

IBMn

Table 11-25 IBMn Register Field Descriptions

Fields

Description
Read/
Write

Reset
StateName Bits

IBM 63:0

Instruction breakpoint address mask for condition:

0: Corresponding address bit compared

1: Corresponding address bit masked

R/W Undefined

63 8 7 0

0 ASID

Table 11-26 IBASIDn Register Field Descriptions

Fields

Description
Read/
Write

Reset
StateName Bits

ASID 7:0 Instruction breakpoint ASID value for compare. R/W Undefined

0 63:8 Must be written as zeros; return zeros on read. 0 0

63 24 23 22 3 2 1 0

0 ASIDuse 0 TE 0 BE
MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10 209

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

Chapter 11 EJTAG Debug Support

akpoints.
nd
ets are

NC
ple,

ise
11.5.7 Data Breakpoint Registers

This section describes the data breakpoint registers. These registers provide status and control for the data bre
All registers are in drseg. The two implemented breakpoints are numbered 0 and 1, respectively, for registers a
breakpoints. The specific breakpoint number is indicated by “n”. The registers and their respective address offs
shown inTable 11-28.

To remove hazards when updating data hardware breakpoint registers, the debug handler must execute the SY
instruction followed by at least two cycles in Debug Mode after writing to the data breakpoint registers (for exam
using two SSNOPs). This procedure ensures that the registers are fully updated for Non-Debug Mode, otherw
behavior of the processor is UNDEFINED.

Table 11-27 IBCn Register Field Descriptions

Fields

Description
Read/
Write

Reset
StateName Bits

ASIDuse 23

Use ASID value in compare for instruction breakpoint n:

0: Do not use ASID value in compare

1: Use ASID value in compare

Debug software should only set the ASIDuse if a TLB in the
implementation is used by the application software.

R/W Undefined

TE 2

Use instruction breakpoint n as triggerpoint:

0: Do not use it as triggerpoint

1: Use it as triggerpoint

R/W 0

BE 0

Use instruction breakpoint n as breakpoint:

0: Do not use it as breakpoint

1: Use it as breakpoint

R/W 0

0 63:24,
22:3, 1 Must be written as zeros; return zeros on read. 0 0

Table 11-28 Data Breakpoint Register Mapping

Offset in drseg
Register

Mnemonic Register Name and Description

0x2000 DBS Data Breakpoint Status

0x2100 + 0x100 * n DBAn Data Breakpoint Address n

0x2108 + 0x100 * n DBMn Data Breakpoint Address Mask n

0x2110 + 0x100 * n DBASIDn Data Breakpoint ASID n

0x2118 + 0x100 * n DBCn Data Breakpoint Control n

0x2120 + 0x100 * n DBVn Data Breakpoint Value n
210 MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

11.5 Hardware Breakpoints

ts. It
ts.

ister
11.5.7.1 Data Breakpoint Status (DBS) Register

The Data Breakpoint Status (DBS) register holds implementation and status information about the data breakpoin
is located at drseg offset 0x2000. The ASIDsup, NoSVmatch, and NoLVmatch fields apply to all data breakpoin
Figure 11-10 shows the format of theDBS register;Table 11-29 describes theDBS register fields.

Figure 11-10 DBS Register Format

11.5.7.2 Data Breakpoint Address n (DBAn) Register

The Data Breakpoint Address n (DBAn) register has the address used in the condition for data breakpoint n. This reg
is located at drseg offset 0x2100 + 0x100 * n.Figure 11-11shows the format of theDBAnregister;Table 11-30describes
theDBAn register field.

63 31 30 29 28 27 24 23 2 1 0

0 ASIDsup NoSVmatch NoLVmatch BCN 0 BS[1:0]

Table 11-29 DBS Register Field Descriptions

Fields

Description
Read/
Write

Reset
StateName Bits

ASIDsup 30

Indicates if ASID compare is supported in data breakpoints:

0: No ASID compare

1: ASID compare (DBASIDn register implemented)

ASID support indication does not guarantee a TLB-type MMU,
because the same hardware breakpoint implementation can be
used with processors having all different types of MMUs.

R 1

NoSVmatch 29

Indicates if a value compare on a store is supported in data
breakpoints:

0: Data value and address in condition on store

1: Address compare only in condition on store

R 0

NoLVmatch 28

Indicates if a value compare on a load is supported in data
breakpoints:

0: Data value and address in condition on load

1: Address compare only in condition on load

R 0

BCN 27:24

Number of data breakpoints implemented:

0: Reserved

1-13: Number of data breakpoints

R 2

BS[1:0] 1:0

Break status for breakpoint n is at BSn, where n is 0 or 1. The bit
is set to 1 when the condition for its corresponding breakpoint has
matched.

The number of BS bits implemented corresponds to the number of
breakpoints indicated by the BCN bit.

Debug software is expected to clear the bits before use, since these
are not cleared by reset.

R/W0 Undefined

0 63:31,
23:2 Must be written as zeros; return zeros on read. 0 0
MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10 211

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

Chapter 11 EJTAG Debug Support

ta

t is
Figure 11-11 DBAn Register Format

11.5.7.3 Data Breakpoint Address Mask n (DBMn) Register

The Data Breakpoint Address Mask n (DBMn) register has the address compare mask used in the condition for da
breakpoint n. The address that is masked is in theDBAnregister. TheDBMn register is located at drseg offset 0x2108 +
0x100 * n.Figure 11-12 shows the format of theDBMn register;Table 11-31 describes theDBMn register field.

Figure 11-12 DBMn Register Format

11.5.7.4 Data Breakpoint ASID n (DBASIDn) Register

The Data Breakpoint ASID n (DBASIDn) register has the ASID value used in the compare for data breakpoint n. I
located at drseg offset 0x2110 + 0x100 * n.

Figure 11-13 shows the format of theDBASIDn register;Table 11-32 describes theDBASIDn register fields.

Figure 11-13 DBASIDn Register Format

63 0

DBAn

Table 11-30 DBAn Register Field Descriptions

Fields

Description
Read/
Write

Reset
StateName Bits

DBA 63:0 Data breakpoint address for condition R/W Undefined

63 0

DBMn

Table 11-31 DBMn Register Field Descriptions

Fields

Description
Read/
Write

Reset
StateName Bits

DBMn 63:0

Data breakpoint address mask for condition:

0: Corresponding address bit compared

1: Corresponding address bit masked

R/W Undefined

63 8 7 0

0 ASID

Table 11-32 DBASIDn Register Field Descriptions

Fields

Description
Read/
Write

Reset
StateName Bits

ASID 7:0 Data breakpoint ASID value for compare. R/W Undefined

0 63:8 Must be written as zeros; return zeros on read. 0 0
212 MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

11.5 Hardware Breakpoints

oint,
t drseg
11.5.7.5 Data Breakpoint Control n (DBCn) Register

The Data Breakpoint Control n (DBCn) register determines what constitutes data breakpoint n: triggerpoint, breakp
ASID value inclusion, load/store access fulfillment, ignore byte access, byte lane mask. This register is located a
offset 0x2118 + 0x100 * n.Figure 11-14shows the format of theDBCnregister;Table 11-33describes theDBCnregister
fields.

Figure 11-14 DBCn Register Format

63 24 23 22 21 14 13 12 11 4 3 2 1 0

0 ASIDuse 0 BAI[7:0] NoSB NoLB BLM[7:0] 0 TE 0 BE

Table 11-33 DBCn Register Field Descriptions

Fields

Description
Read/
Write

Reset
StateName Bits

ASIDuse 23

Use ASID value in compare for data breakpoint n:

0: Do not use ASID value in compare

1: Use ASID value in compare

Debug software should only set the ASIDuse if a TLB in the
implementation is used by the application software.

R/W Undefined

BAI[7:0] 21:14

Byte access ignore. Controls ignore of access to specific bytes.
BAI[0] ignores access to byte at bits [7:0] of the data bus, BAI[1]
ignores access to byte at bits [15:8], etc.:

0: Condition depends on access to corresponding byte

1: Access for corresponding byte is ignored

Debug software must adjust for endianness when programming
this field.

R/W Undefined

NoSB 13

Controls whether condition for data breakpoint is ever fulfilled on
a store access:

0: Condition can be fulfilled on store access

1: Condition is never fulfilled on store access

R/W Undefined

NoLB 12

Controls whether condition for data breakpoint is ever fulfilled on
a load access:

0: Condition can be fulfilled on load access

1: Condition is never fulfilled on load access

R/W Undefined

BLM[7:0] 11:4

Byte lane mask for value compare on data breakpoint. BLM[0]
masks byte at bits [7:0] of the data bus, BLM[1] masks byte at bits
[15:8], etc.:

0: Compare corresponding byte lane

1: Mask corresponding byte lane

Debug software must adjust for endianness when programming
this field.

R/W Undefined

TE 2

Use data breakpoint n as triggerpoint:

0: Do not use it as triggerpoint

1: Use it as triggerpoint

R/W 0
MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10 213

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

Chapter 11 EJTAG Debug Support

d at

cesses,
11.5.7.6 Data Breakpoint Value n (DBVn) Register

The Data Breakpoint Value n (DBVn) register has the value used in the condition for data breakpoint n. It is locate
drseg offset 0x2120 + 0x100 * n.Figure 11-15shows the format of theDBVnregister;Table 11-34describes theDBVn
register field.

Figure 11-15 DBVn Register Format

11.6 EJTAG Test Access Port

This section describes the EJTAG features provided with the EJTAG Test Access Port (TAP).

The overall features of the EJTAG Test Access Port (TAP) are:

• Identification of device and EJTAG debug features accessed through the TAP

• EJTAG memory in dseg, which provides a memory-mapped area handled by the probe through processor ac
whereby the processor can execute a debug handler not present in the system memory

• Reset handling allows debug exception immediately after reset

• Debug interrupt request from probe

• Low-power mode indications

Figure 11-16 shows an overview of the elements in the TAP.

BE 0

Use data breakpoint n as breakpoint:

0: Do not use it as breakpoint

1: Use it as breakpoint

R/W 0

0 63:24, 22,
3, 1 Must be written as zeros; return zeros on read. 0 0

63 0

DBVn

Table 11-34 DBVn Register Field Descriptions

Fields

Description
Read/
Write

Reset
StateName Bits

DBV 63:0

Data breakpoint data value for condition.

Debug software must adjust for endianness when
programming this field.

R/W Undefined

Table 11-33 DBCn Register Field Descriptions (Continued)

Fields

Description
Read/
Write

Reset
StateName Bits
214 MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

11.6 EJTAG Test Access Port

of data

ribed to

ls

n or

edge of

of
Figure 11-16 Test Access Port (TAP) Overview

The TAP consists of the following signals: Test Clock (EJ_TCK), Test Mode (EJ_TMS), Test Data In (EJ_TDI), Test
Data Out (EJ_TDO), and the Test Reset (EJ_TRST_N). EJ_TCK andEJ_TMS control the state of the TAP controller,
which controls access to the Instruction or selected data register(s). The Instruction register controls selection
registers. Access to the Instruction and data register(s) occurs serially throughEJ_TDI andEJ_TDO. TheEJ_TRST_N
is an asynchronous reset signal to the TAP.

Access through the TAP does not interfere with the operation of the processor, unless features specifically desc
do so are used.

11.6.1 TAP Signals

The signalsEJ_TCK, EJ_TMS, EJ_TDI, EJ_TDO, and theEJ_TRST_Nmake up the interface for the TAP. These signa
are described in detail below.

11.6.1.1 Test Clock Input (EJ_TCK)

EJ_TCKis the clock that controls the updating of the TAP controller and the shifting of data through the Instructio
selected data register(s).

EJ_TCK is independent of the processor clock, with respect to both frequency and phase.

11.6.1.2 Test Mode Select Input (EJ_TMS)

EJ_TMS is the control signal for the TAP controller. This signal is sampled on the rising edge ofEJ_TCK.

11.6.1.3 Test Data Input (EJ_TDI)

EJ_TDI is the test data input to the Instruction or selected data register(s). This signal is sampled on the rising
EJ_TCK for some TAP controller states.

11.6.1.4 Test Data Output (EJ_TDO)

EJ_TDO is the test data output from the Instruction or data register(s). This signal changes on the falling edge
EJ_TCK. EJ_TDOis always driven but theEJ_TDOzstateoutput is provided to indicate whenEJ_TDOis shifting data
out. For more information on using theEJ_TDOzstateport, refer to Chapter 4 in theMIPS64™ 20Kc™ Processor Core
Integrator’s Guide.

Instruction Register

Selected Data Register(s)

EJ_TDI

EJ_TDO

E
JT

A
G

 T
A

P
 in

te
rf

ac
e

EJ_TCK

EJ_TMS

EJ_TRST_N

TAP Controller
MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10 215

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

Chapter 11 EJTAG Debug Support

cessor,

registers.

ediate
11.6.1.5 Test Reset Input (EJ_TRST_N)

EJ_TRST_N is the test reset input that asynchronously resets the TAP, with the following immediate effects:

• The TAP controller is put into the Test-Logic-Reset state

• TheInstruction register is loaded with the IDCODE instruction

• Any EJTAGBOOT indication is cleared

• TheEJ_TDOzstate port goes high

EJ_TRST_Ndoes not reset any other part of the TAP or processor. Thus this type of reset does not affect the pro
and the processor reset is not allowed to have any effect on the above parts of the TAP.

The TAP reset takes effect when theEJ_TRST_N input is low, asynchronous to clocking withEJ_TCK.

11.6.2 TAP Controller

The TAP controller is a state machine whose active state controls TAP reset and access to Instruction and data

The state transitions in the TAP controller occur on the rising edge ofEJ_TCK or whenEJ_TRST_N goes low. The
EJ_TMS signal determines the transition at the rising edge ofEJ_TCK. Figure 11-17 shows the state diagram for the
TAP controller.

Figure 11-17 TAP Controller State Diagram

The behavior of the functional states shown in the figure is described below. The non-functional states are interm
states in which no registers in the TAP change, and are not described here.

Events in the following subsections are described with relation to the rising and falling edge ofEJ_TCK. The described
events take place when the TAP controller is in the corresponding state when the clock changes.

The TAP controller is forced into the Test-Logic-Reset state at power-up by a low value onEJ_TRST_N.

Test-Logic-Reset
EJTMS=1

Run-Test / Idle

0

Select-DR-Scan10

Capture-DR

0

0

Shift-DR

1

Exit1-DR

0

Pause-DR

1

Exit2-DR

1

Update-DR

0

0

01

1

0

1

Select-IR-Scan

Capture-IR

0

0

Shift-IR

1

Exit1-IR

0

Pause-IR

1

Exit2-IR

1

Update-IR

0

0

01

1

0

1

1 1
216 MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

11.6 EJTAG Test Access Port

ore.

n. The

n,
11.6.3 Test-Logic-Reset State

When this state is entered, theInstruction register is loaded with the IDCODE instruction, and any EJTAGBOOT
indication is cleared. This state ensures that the TAP does not interfere with the normal operation of the CPU c

The TAP controller always reaches this state after five rising edges onEJ_TCK whenEJ_TMS is set to 1.

A low value onEJ_TRST_N immediately places the TAP controller in this state asynchronous toEJ_TCK.

11.6.3.1 Capture-IR State

In the Capture-IR state, theInstruction register is loaded with the IDCODE instruction on the rising edge ofEJ_TCK.

11.6.3.2 Shift-IR State

In the Shift-IR state, the LSB of theInstruction register is output onEJ_TDO on the falling edge ofEJ_TCK. The
Instruction register is shifted one position from MSB to LSB on the rising edge ofEJ_TCK, with the MSB shifted in
from EJ_TDI. The value in theInstructionregister does not take effect until the Update-IR state.Figure 11-18shows the
shifting direction for theInstruction register.

Figure 11-18 Shifting of the Instruction Register During the Shift IR State

The length of theInstruction register is five bits.

The value loaded in the Capture-IR state is used as the initial value for theInstructionregister when shifting starts; thus
it is not possible to read out the previous value of theInstruction register.

11.6.3.3 Update-IR State

The value in theInstruction register takes effect on the rising edge ofEJ_TCK.

11.6.3.4 Capture-DR State

The value of the selected data register(s) is captured to a parallel register on the rising edge ofEJ_TCKfor shifting out
in the Shift-DR state. The capture to a parallel register is performed so as not to affect normal processor operatio
Capture-DR state reads the data in order to output the read value in the Shift-DR state.

TheInstruction register controls the selection of the following data register(s): Bypass, Device ID, Implementatio
EJTAG Control, Address, Data register(s), and Fast Data.

11.6.3.5 Shift-DR State

The LSB of the selected data register(s) is output onEJ_TDO on the falling edge ofEJ_TCK. The selected data
register(s) is shifted one position from MSB to LSB on the rising edge ofEJ_TCK, with EJ_TDIshifted in at the MSB.
The value(s) shifted into the register(s) does not take effect until the Update-DR state.Figure 11-19 shows the shifting
direction for the selected data register.

EJ_TDI Instruction Register

4 / MSB 0 / LSB

EJ_TDO
MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10 217

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

Chapter 11 EJTAG Debug Support

he

r, as
Figure 11-19 Shifting of the Instruction Register During the Shift DR State

The length of the shift path depends on the selected data register(s).

11.6.3.6 Update-DR State

The update of the selected data register(s) with the value from the Shift-DR state occurs on the falling edge ofEJ_TCK.
This update writes the selected register(s).

11.6.4 Instruction Register and Special Instructions

TheInstruction register controls selection of accessed data register(s), and controls the setting and clearing of t
EJTAGBOOT indication.

TheInstruction register is five bits wide.Table 11-35 shows the allocation of the TAP instruction.

The instructions IDCODE, IMPCODE, ADDRESS, DATA, CONTROL, and BYPASS select a single data registe
described in the table. The unused instructions select theBypass register. The ALL, EJTAGBOOT, NORMALBOOT,
and FASTDATA instructions are described in the following subsections.

Any EJTAGBOOT indication is cleared at power-up either by a low value on theEJ_TRST_N or by a power-up reset
circuit, and the Instruction register is loaded with the IDCODE instruction.

Table 11-35 TAP Instruction Overview

Code Instruction Function

0x00 EXTEST Selects the EXTEST mode for boundary scan

0x01 IDCODE SelectsDevice Identification (ID) register

0x03 IMPCODE SelectsImplementation register

0x08 ADDRESS SelectsAddress register

0x09 DATA SelectsData register

0x0A CONTROL SelectsEJTAG Control register

0x0B ALL Selects theAddress, Data, andEJTAG Control registers

0x0C EJTAGBOOT Makes the processor take a debug exception after reset

0x0D NORMALBOOT Makes the processor execute the reset handler after reset

0x0E FASTDATA
Provides a one-bit register whose value is tagged to the front of theData
register to capture the value of the processor access pending (PrAcc) bit in
theEJTAG Control register.

0x1C SAMPPRELOAD Selects the Sample/Preload mode for boundary scan

0x1E Reserved Reserved

0x1F BYPASS Selects theBypass register

MSB 0 / LSB

EJTDI EJTDO
Selected Data Register(s)
218 MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

11.6 EJTAG Test Access Port

eption
nternal
nd soft

. The

is given

handler

execute
rantees
11.6.4.1 ALL Instruction

TheAddress, Data, andEJTAG Controldata registers are selected at once with the ALL instruction, as shown inFigure
11-20.

Figure 11-20 Selecting Registers Using the ALL Instruction

11.6.4.2 EJTAGBOOT and NORMALBOOT Instructions

The EJTAGBOOT and NORMALBOOT instructions control whether the processor takes a Debug Interrupt exc
after reset with execution of the debug handler from the probe, or if it executes the reset handler as usual. An i
EJTAGBOOT indication holds information on the action to take at a processor reset, which applies to both reset a
reset.

The internal EJTAGBOOT indication is set when the EJTAGBOOT instruction takes effect in the Update-IR state
indication is cleared when the NORMALBOOT instruction takes effect in the Update-IR state, or when the
Test-Logic-Reset state is entered, for example, whenEJ_TRST_N is asserted low. The requirement of clearing the
internal EJTAGBOOT indication when the Test-Logic-Reset state is entered, and not on aEJ_TCK clock when in the
state, ensures that the indication can be cleared with five clocks onEJ_TCK whenEJ_TMS is high.

The internal EJTAGBOOT indication is cleared at power-up either by a low value on theEJ_TRST_Nor by a power-up
reset circuit. Thus the processor executes the reset handler after power-up unless the EJTAGBOOT instruction
through the TAP.

TheBypass register is selected when the EJTAGBOOT or NORMALBOOT instruction is given.

The EjtagBrk, ProbEn, and ProbTrap bits in theEJTAG Control register follow the internal EJTAGBOOT indication.
They are all set at processor reset if a Debug Interrupt exception is to be generated, with execution of the debug
from the probe.

When an EJTAGBOOT instruction is indicated at reset, then it must be possible to take the debug exception and
the debug handler from the probe even if no instructions can be fetched from the reset handler. This condition gua
that the system will not hang in this type of case.

11.6.4.3 FASTDATA Instruction

The FASTDATA instruction selects the Data and the Fastdata registers at the same time as shown inFigure 11-21.

Figure 11-21 EJ_TDI to EJ_TDO Path when in Shift-DR State and FASTDATA Instruction is Selected

EJ_TDI
Address register EJTAG Control registerData register

EJ_TDO

63 / MSB 0 / LSB35 / MSB 0 / LSB 63 / MSB 0 / LSB

EJ_TDI
Data register Fastdata register

EJ_TDO

0MSB 0 / LSB
MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10 219

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

Chapter 11 EJTAG Debug Support

e

egister

ister
liant
11.6.5 Data Registers

Table 11-36 summarizes the data registers in the TAP. Complete descriptions of these registers are located in th
following subsections.

A read of a data register corresponds only to the Capture-DR state of the TAP controller, and a write of the data r
corresponds to the Update-DR state only.

11.6.5.1 Device Identification (ID) Register (TAP Instruction IDCODE)

TheDevice IDregister is a 32-bit read-only register that identifies the specific device implementing EJTAG. This reg
is also defined in IEEE 1149.1. The register holds a unique number among different devices with EJTAG comp
processors implemented.Figure 11-22shows the format of theDevice IDregister;Table 11-37describes theDevice ID
register fields.

Figure 11-22 Device ID Register Format

Table 11-36 EJTAG TAP Data Registers

Instruction Used
to Access Register

Register
Name Function Reference

IDCODE Device ID Identifies device and accessed processor in the
device.

SeeSection 11.6.5.1, "Device
Identification (ID) Register (TAP
Instruction IDCODE)"

IMPCODE Implementation Identifies main debug features implemented
and accessible through the TAP.

SeeSection 11.6.5.2, "Implementation
Register (TAP Instruction IMPCODE)"

DATA or ALL Data Data register for processor access. SeeSection 11.6.5.3, "Data Register
(TAP Instruction DATA or ALL)"

ADDRESS or ALL Address Address register for processor access. SeeSection 11.6.5.4, "Address Register
(TAP Instruction ADDRESS or ALL)"

CONTROL or ALL EJTAG Control Control register for most EJTAG features used
through the TAP.

SeeSection 11.6.5.5, "EJTAG Control
Register (ECR) (TAP Instruction
CONTROL or ALL)"

FASTDATA Fastdata

Provides a one-bit register whose value is
tagged to the front of theData register to
capture the value of the processor access
pending (PrAcc) bit in theEJTAG Control
register.

SeeSection 11.6.4.3, "FASTDATA
Instruction"

BYPASS,
EJTAGBOOT,

NORMALBOOT or
unused EJTAG

instructions

Bypass Provides a one-bit shift path through the TAP.SeeSection 11.6.4.2, "EJTAGBOOT
and NORMALBOOT Instructions"

31 28 27 12 11 1 0

Version PartNumber ManufID 1

Table 11-37 Device ID Register Field Descriptions

Fields

Description
Read/
Write Power-up StateName Bits

Version 31:28 Identifies the version of a specific device. R Preset to the state of
EJ_Version[3:0]
220 MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

11.6 EJTAG Test Access Port

liant
11.6.5.2 Implementation Register (TAP Instruction IMPCODE)

TheImplementationregister is a 32-bit read-only register that identifies features implemented in this EJTAG-comp
processor, mainly those accessible from the TAP.Figure 11-23 shows the format of theImplementation register;Table
11-38 describes theImplementation register fields.

Figure 11-23 Implementation Register Format

PartNumber 27:12 Identifies the part number of a specific device. R

Bits 27:20 are preset
to 0x05, and bits
19:16 preset value
depends on
technology and
process.

Bits 15:12 are preset
to the state of
EJ_PartNumber[3:0]

ManufID 11:1
Identifies the manufacturer identity code of a specific
device. Hardwired to the compressed MIPS JEDEC
code.

R 0x127

1 0 Ignored on write; returns one on read. R 1

31 29 28 27 25 24 23 22 21 20 17 16 15 14 13 1 0

EJTAGver R4k/
R3k

0 DINT
sup

0 ASID
size

0 MIPS
16

0 No
DMA

0 MIPS
32/64

Table 11-38 Implementation Register Field Descriptions

Fields

Description
Read/
Write

Power-up
StateName Bits

EJTAGver 31:29

Indicates the EJTAG version:

0: Version 1 and 2.0

1: Version 2.5

2: Version 2.6

3-7: Reserved

R 2

R4k/R3k 28

Indicates R4k or R3k privileged environment:

0: R4k privileged environment

1: R3k privileged environment

R 0

DINTsup 24

Indicates support forDINT signal from probe:

0: DINT signal from the probe is not supported by this chip

1: Probe can useDINT signal to make debug interrupt on this
chip

R 1

Table 11-37 Device ID Register Field Descriptions (Continued)

Fields

Description
Read/
Write Power-up StateName Bits
MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10 221

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

Chapter 11 EJTAG Debug Support

ister

at the
11.6.5.3 Data Register (TAP Instruction DATA or ALL)

The read/writeData register is used for opcode and data transfers during processor accesses. The width of theData
register is 64 bits.

The value read in theDataregister is valid only if a processor access for a write is pending, in which case the data reg
holds the store value. The value written to theData register is only used if a processor access for a pending read is
finished afterwards, in which case the data value written is the value for the fetch or load. This behavior implies th
Data register is not a memory location where a previously written value can be read afterwards.

Figure 11-24 shows the format of theData register;Table 11-39 describes theData register field.

Figure 11-24 Data Register Format

ASIDsize 22:21

Indicates size of the ASID field:

0: No ASID in implementation

1: 6-bit ASID

2: 8-bit ASID

3: Reserved

R 2

MIPS16 16

Indicates MIPS16™ ASE support in the processor:

0: No MIPS16 ASE support

1: MIPS16 ASE is supported

R 0

NoDMA 14

Indicates no EJTAG DMA support:

0: Reserved

1: No EJTAG DMA support

R 1

MIPS32/64 0

Indicates 32-bit or 64-bit processor:

0: 32-bit processor

1: 64-bit processor

See the R4k/R3k bit for indication of privileged environment.

R 1

0
27:25, 23,
20:17, 15,

13:1
Ignored on writes; return zeros on reads. R 0

63 0

Data

Table 11-39 Data Register Field Descriptions

Fields

Description
Read/
Write

Reset
StateName Bits

Data 63:0 Data used by processor access. R/W Undefined

Table 11-38 Implementation Register Field Descriptions (Continued)

Fields

Description
Read/
Write

Power-up
StateName Bits
222 MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

11.6 EJTAG Test Access Port

stem.
/store

ccess read

ith the
7,
The contents of theData register are not aligned but hold data as it is seen on a data bus for an external memory sy
Thus the bytes are positioned in theData register based on access size, address, and endianness. The fetch/load
shifter or other alignment mechanism in the processor performs the required alignment between theData register and
the processor; the contents of theData register follow the format as on an external data bus.

The bytes not accessed for a processor access write are undefined, and the bytes not accessed for a processor a
must be written to 0s when the probe shifting the value in provides theData register value.

Table 11-40shows the byte positioning in which case the three LSBs of the Address register are used together w
Psz field from theEJTAG Controlregister. Byte 0 refers to bits [7:0], byte 1 refers to bits [15:8], and so on up to byte
which refers to bits [63:56], independent of endianness.

Table 11-40 Data Register Contents

Psz
from
ECR Size Address[2:0]

Little Endian Big Endian

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

0 Byte

0002

0012

0102

0112

1002

1012

1102

1112

1 Halfword

0002

0102

1002

1102

2

Word 0002

5-byte/Quinti 0002

6-byte/Sexti 0002

7-byte/Septi 0002

Word 1002

5-byte/Quinti 0112

6-byte/Sexti 0102

7-byte/Septi 0012
MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10 223

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

Chapter 11 EJTAG Debug Support

to the

d data
d by the

on,

lready
t.
11.6.5.4 Address Register (TAP Instruction ADDRESS or ALL)

The read-onlyAddressregister provides the address for a processor access. The width of the register corresponds
size of the physical address in the processor implementation, which is 36 bits.

The value read in the register is valid if a processor access is pending, otherwise the value is undefined.

The three LSBs of the register are used with the Psz field from the EJTAG Control register to indicate the size an
position of the pending processor access transfer. These bits are not taken directly from the address reference
load/store. SeeSection 11.6.5.3, "Data Register (TAP Instruction DATA or ALL)" on page 222for more details.Figure
11-25 shows the format of theAddress register;Table 11-41 describes theAddress register field.

Figure 11-25 Address Register Format

11.6.5.5 EJTAG Control Register (ECR) (TAP Instruction CONTROL or ALL)

The 32-bit EJTAG Control Register (ECR) handles processor reset and soft reset indication, Debug Mode indicati
access start, finish, and size and read/write indication. TheECR also:

• controls debug vector location and indication of serviced processor accesses

• allows debug interrupt request

• indicates processor low-power mode

• allows implementation dependent processor and peripheral reset

TheECRis not updated/written in the Update-DR state unless the Reset occurred; that is Rocc (bit 31) is either a
0 or is written to 0 at the same time. This condition ensures proper handling of processor accesses after a rese

3
Triple

0002

0012

1002

1012

Doubleword 0002

Reserved n.a. n.a.

35 0

Address

Table 11-41 Address Register Field Descriptions

Fields

Description
Read/
Write

Reset
StateName Bits

Address 35:0 Address used by processor access. R Undefined

Table 11-40 Data Register Contents (Continued)

Psz
from
ECR Size Address[2:0]

Little Endian Big Endian

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0
224 MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

11.6 EJTAG Test Access Port

Internal
n when
Bits that are R/W in the register return their written value on a subsequent read, unless other behavior is defined.
synchronization hardware thus ensures that a written value is updated for reading immediately afterwards, eve
the TAP controller takes the shortest path from the Update-DR to Capture-DR state.

Reset of the processor can be indicated in theEJ_TCK domain a number ofEJ_TCK cycles after it is removed in the
processor clock domain in order to allow for proper synchronization between the two clock domains.

Figure 11-26 shows the format of theECR; Table 11-42 describes theECR fields.

Figure 11-26 EJTAG Control Register Format

31 30 29 28 23 22 21 20 19 18 17 16 15 14 13 12 11 4 3 2 0

Rocc Psz 0 Doze Halt PerRst PRnW PrAcc 0 PrRst ProbEnProbTrap 0 EjtagBrk 0 DM 0

Table 11-42 EJTAG Control Register Field Descriptions

Fields

Description
Read/
Write Reset StateName Bits

Rocc 31

Indicates if a processor reset or soft reset has occurred since the bit
was cleared:

0: No reset occurred
1: Reset occurred

The Rocc bit stays set as long as reset is applied.

This bit must be cleared to acknowledge that the reset was
detected. The EJTAG Control register is not updated in the
Update-DR state unless Rocc is 0 or written to 0 at the same time.
This is in order to ensure correct handling of the processor access
after reset.

R/W0 1

Psz 30:29

Indicates the size of a pending processor access in combination
with the Address register:

0: Byte
1: Halfword
2: Word, 5-7 bytes
3: Triple, Doubleword

A full description is located inSection 11.6.5.3, "Data Register
(TAP Instruction DATA or ALL)", including reserved
combinations with Address register bits.

This field is valid only when a processor access is pending,
otherwise the read value is undefined.

R Undefined

Doze 22

Indicates if the processor is in low-power mode:

0: Processor is not in low-power mode

1: Processor is in low-power mode

Doze indicates Reduced Power (RP) and WAIT low-power modes.

R 0

Halt 21

Indicates if the internal system bus clock is running:

0: Internal system bus clock is running

1: Internal system bus clock is stopped

Halt indicates a WAIT event in the system.

R 0

PerRst 20 Unused in the 20Kc processor. R 0
MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10 225

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

Chapter 11 EJTAG Debug Support
PRnW 19

Indicates read or write of a pending processor access:

0: Read processor access, for a fetch/load access

1: Write processor access, for a store access

This value is defined only when a processor access is pending.

R Undefined

PrAcc 18

Indicates a pending processor access and controls finishing of a
pending processor access. When read:

0: No pending processor access

1: Pending processor access

A write of 0 finishes a processor access if pending; otherwise
operation of the processor is UNDEFINED if the bit is written to
0 when no processor access is pending. A write of 1 is ignored.

R/W0 0

PrRst 16 Unused in the 20Kc processor. R 0

ProbEn 15

Controls indication to the processor of whether the probe expects
to handle accesses to EJTAG memory through servicing of
processors accesses:

0: Probe does not service processors accesses

1: Probe does service processor accesses

The ProbEn bit is reflected as a read-only bit in the Debug Control
Register (DCR) bit 0.

When this bit is changed, then it is guaranteed that the new value
has taken effect in theDCR when it can be read back here. This
handshake mechanism ensures that the setting from theEJ_TCK
clock domain takes effect in the processor clock domain.

However, a change of the ProbEn prior to setting the EjtagBrk bit
is ensured to affect execution of the debug handler due to the
debug exception.

Not all combinations of ProbEn and ProbTrap are allowed, see
Table 11-43.

R/W

SeeSection 11.6.5.6,
"EJTAGBOOT Indication
Determines Reset Value of
EjtagBrk, ProbTrap, and
ProbEn" for more
information.

ProbTrap 14

Controls location of the debug exception vector:

0: Normal memory 0xFFFF FFFF BFC0 0480

1: EJTAG memory 0xFFFF FFFF FF20 0200

When this bit is changed, then it is guaranteed that the new value
is indicated to the processor when it can be read back here. This
handshake mechanism ensures that the setting from theEJ_TCK
clock domain takes effect in the processor clock domain.

However, a change of the ProbTrap prior to setting the EjtagBrk bit
is ensured to affect execution of the debug handler due to the
debug exception.

R/W

SeeSection 11.6.5.6,
"EJTAGBOOT Indication
Determines Reset Value of
EjtagBrk, ProbTrap, and
ProbEn" for more
information.

Table 11-42 EJTAG Control Register Field Descriptions (Continued)

Fields

Description
Read/
Write Reset StateName Bits
226 MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

11.6 EJTAG Test Access Port

ation.
t value

 EJTAG

al reset
11.6.5.6 EJTAGBOOT Indication Determines Reset Value of EjtagBrk, ProbTrap, and ProbEn

The reset value of the EjtagBrk, ProbTrap, and ProbEn bits follows the setting of the internal EJTAGBOOT indic
If the EJTAGBOOT instruction has been given, and the internal EJTAGBOOT indication is active, then the rese
of the three bits is set (1), otherwise the reset value is clear (0).

The results of setting these bits are:

• A Debug Interrupt exception is requested right after reset because EjtagBrk is set

• The debug handler is executed from the EJTAG memory because ProbTrap is set to indicate debug vector in
memory at 0xFFFF FFFF FF20 0200

• Service of the processor access is indicated because ProbEn is set

Thus it is possible to execute the debug handler right after reset, without executing any instructions from the norm
handler.

EjtagBrk 12

Requests a Debug Interrupt exception to the processor when this
bit is written as 1. The debug exception request is ignored if the
processor is already in debug at the time of the request. A write of
0 is ignored.

The debug request restarts the processor clock if the processor was
in a low-power mode, which stopped the processor clock.

The read value indicates a pending Debug Interrupt exception
requested through this bit:

0: No pending Debug Interrupt exception requested through this
bit

1: Pending Debug Interrupt exception

This bit is cleared by hardware when the processor enters Debug
Mode.

R/W1

SeeSection 11.6.5.6,
"EJTAGBOOT Indication
Determines Reset Value of
EjtagBrk, ProbTrap, and
ProbEn" for more
information.

DM 3

Indicates if the processor is in Debug Mode:

0: Processor is in Non-Debug Mode

1: Processor is in Debug Mode

R 0

0

28:23,
17, 13,
11:4,
2:0

Must be written as zeros; return zeros on reads. 0 0

Table 11-42 EJTAG Control Register Field Descriptions (Continued)

Fields

Description
Read/
Write Reset StateName Bits
MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10 227

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

Chapter 11 EJTAG Debug Support

ility of

r
ta access

(on the
. A
ifies the

The
a

11.6.5.7 Combinations of ProbTrap and ProbEn

Use of ProbTrap and ProbEn allows independent specification of the debug exception vector location and availab
EJTAG memory. Behavior for the different combinations is shown inTable 11-43. Note that not all combinations are
allowed.

11.6.5.8 Fastdata Register (TAP Instruction FASTDATA)

The width of theFastdataregister is one bit. During a Fastdata access, theFastdataregister is written and read; that is,
a bit is shifted in and a bit is shifted out. During a Fastdata access, theFastdataregister value shifted in specifies whethe
the Fastdata access should be completed or not. The value shifted out is a flag that indicates whether the Fastda
was successful or not (if completion was requested).

Figure 11-27 Fastdata Register Format

The FASTDATA access is used for efficient block transfers between dmseg (on the probe) and target memory
processor). An “upload” is defined as a sequence of processor loads from target memory and stores to dmseg
“download” is a sequence of processor loads from dmseg and stores to target memory. The “Fastdata area” spec
legal range of dmseg addresses (0xF..F20.0000 – 0xF..F20.000F) that can be used for uploads and downloads.Data
+ Fastdata registers (selected with the FASTDATA instruction) allow efficient completion of pending Fastdata are
accesses.

Table 11-43 Combinations of ProbTrap and ProbEn

ProbTrap ProbEn Debug Exception Vector Processor Accesses

0 0
Normal memory at 0xFFFF FFFF BFC0 0480

Not serviced by probe

0 1 Serviced by probe

1 0
If these two bits are changed to this state the operation of the processor is UNDEFINED.
This would indicate that the debug exception vector is in EJTAG memory, but the probe will
nevertheless not service processor accesses.

1 1 EJTAG memory at 0xFFFF FFFF FF20 0200 Serviced by probe

0

32/64-bit processor SPrAcc

Table 11-44 Fastdata Register Field Description

Fields

Description
Read/
Write

Power-Up
StateName Bits

SPrAcc 0

Shifting in a zero value requests completion of the
Fastdata access. The PrAcc bit in the EJTAG Control
register is overwritten with zero when the access
succeeds. (The access succeeds if PrAcc is one and
the operation address is in the legal dmseg Fastdata
area.) When successful, a one is shifted out. Shifting
out a zero indicates a Fastdata access failure.

Shifting in a one does not complete the Fastdata
access and the PrAcc bit is unchanged. Shifting out a
one indicates that the access would have been
successful if allowed to complete, and a zero
indicates the access would not have successfully
completed.

R/W Undefined
228 MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

11.6 EJTAG Test Access Port

rocessor
sses are
ttempt

also shift in
dmseg’s

the

ister
During Fastdata uploads and downloads, the processor stalls on accesses to the Fastdata area. The PrAcc (p
access pending bit) is 1, indicating the probe is required to complete the access. Both upload and download acce
attempted by shifting in a zero SPrAcc value (to request access completion) and shifting out SprAcc to see if the a
is successful (that is, there was an access pending and a legal Fastdata area address was used). Downloads
the data to be used to satisfy the load from dmseg’s Fastdata area, while uploads shift out the data being stored to
Fastdata area.

As noted above, two conditions must be true for the Fastdata access to succeed:

• PrAcc must be 1 (there must be a pending processor access)

• The Fastdata operation must use a valid Fastdata area address in dmseg (0xF..F20.0000 – 0xF..F20.0000F)

Table 11-45 shows the values of the PrAcc and SPrAcc bits and the results of a Fastdata access.

There is no restriction on the contents of theData register. It is expected that the transfer size is negotiated between
download/upload transfer code and the probe software. Note that the most efficient transfer sizes are word and
doubleword for 32-bit and 64-bit processors, respectively.

The Rocc bit of theControl register is not used for the FASTDATA operation.

11.6.5.9 Bypass Register (TAP Instruction BYPASS, EJTAGBOOT, NORMALBOOT or Unused)

TheBypassregister is a one-bit read-only register, which provides a minimum shift path through the TAP. This reg
is also defined in IEEE 1149.1.Figure 11-28shows the format of theBypassregister;Table 11-46describes theBypass
register field.

Table 11-45 Operation of the FASTDATA Access

Probe Operation

Address
Match
Check

PrAcc in
the

Control
Register

LSB
(SPrAcc)
Shifted In

Action in
the Data
Register

PrAcc
Changes to

LSB
Shifted

Out

Data
Shifted

Out

Download using
FASTDATA

Fails x x None Unchanged 0 Invalid

Passes

1 1 None Unchanged 1 Invalid

1 0 Write Data 0 (SPrAcc) 1
Valid

(Previous)
Data

0 x None Unchanged 0 Invalid

Upload using
FASTDATA

Fails x x None Unchanged 0 Invalid

Passes

1 1 None Unchanged 1 Invalid

1 0 Read Data 0 (SPrAcc) 1 Valid Data

0 x None Unchanged 0 Invalid
MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10 229

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

Chapter 11 EJTAG Debug Support
Figure 11-28 Bypass Register Format

0

0

Table 11-46 Bypass Register Field Description

Fields

Description
Read/
Write

Power-up
StateName Bits

0 0 Ignored on writes; returns zero on reads. R 0
230 MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

ocessor

ly access

gnals are
Chapter 12

20Kc Test Features

This chapter describes the Enhanced Joint Test Action Group (EJTAG) debug features supported by the 20Kc pr
and contains the following sections:

• Section 12.1, "Cache Test Mode"

• Section 12.2, "PLL Bypass Mode"

• Section 12.3, "BIST (Built-In Self Test)"

12.1 Cache Test Mode

The 20Kc processor provides a cache test mode that can be used during manufacturing test and debug to direct
the following internal RAM arrays:

• Data Cache (DCache) data array

• Data Cache (DCache) tag array

• Instruction Cache (ICache) data array

• Instruction Cache (ICache) tag array

12.1.1 Cache Test Mode Interface Signals

Cache test mode is accessed by using a subset of the system interface signals. The following system interface si
used during cache test mode:

• EB_SysAD[31:0]

• EB_SysADP[3:0]

• EB_PrcAD[31:0

• EB_PrcADP[3:0]

• EB_SysVld

• SI_PLLBypass

• TS_TCmd[3:0]

• SI_Reset

• SI_ColdReset

12.1.2 System Interface Clock Divisor and Mode

Cache Test Mode is only supported when the PLL is bypassed. In this mode, theSI_ClkIn to CPU clock ratio is
effectively 1:1. In order to bypass the PLL, theSI_PLLBypass input pin must be asserted. In order to distinguish from
ordinary PLL Bypass mode operation, theTS_TCmd[3:0]bits are used. A setting of 0010 on theTS_TCmd[3:0]inputs
indicates Cache Test Mode.

Cache Test Mode operation is only guaranteed up to a maximum frequency of 100Mhz.
MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10 231

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

Chapter 12 20Kc Test Features

 data rate

d Reset

lied:
Cache Test Mode is only operational in synchronous mode and cannot be used in source synchronous double
mode.

12.1.3 Entering Cache Test Mode

Entry into Cache Test Mode happens through a mechanism similar to the Power-On Reset Sequence or a Col
sequence. During this sequence theSI_PLLBypass input pin must be asserted and theTS_TCmd[3:0] pins must be set
to 0010. One key difference from the Power-On Reset Sequence or Cold Reset Sequence is that theSI_Reset and
SI_ColdReset signals are kept asserted through the Cache Test Mode operation.

If the entry into Cache Test Mode is via the beginning of a Power-On sequence, the following sequence is app

1. All Input pins are held low.

2. Vdd andVddP are applied to the part.

3. SI_ClkIn is applied concurrent with or afterVdd.

4. SI_PLLBypass andTS_TCmd[1] are asserted concurrent with or afterVdd.

5. OnceVdd, VddP, andSI_SysClkIn are stable and 5SI_ClkIn cycles afterSI_PLLBypass andTS_TCmd[1] are
stable,SI_VddOk is asserted.

6. 100 ns afterSI_VddOk is asserted, the first Cache Test Mode command can be issued.

In order to stay in Cache Test Mode, the external testing agent, must keepSI_Reset andSI_ColdReset asserted. The
different cache arrays may then be tested by appropriately controlling theEB_SysAD[31:0], EB_SysADP[3:0]and
EB_SysVld pins. Any results are observed on theEB_PrcAD[31:0] andEB_PrcADP[3:0] pins.

Figure 12-1 shows an entry into Cache Test Mode via the beginning of a Power-On Reset sequence.
232 MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

12.1 Cache Test Mode

lied:
Figure 12-1 Entering Cache Test Mode After a Power-On Reset Sequence

If the entry into Cache Test Mode is via the beginning of a ColdReset sequence the following sequence is app

1. SI_ColdReset andSI_Reset are asserted.

2. SI_VddOk is deasserted afterSI_ColdReset andReset are asserted.

3. SI_PLLBypass is asserted andTS_TCmd[3:0]is set to 0010.

4. A minimum of 100 ns afterSI_PLLBypass andTS_TCmd[3:0]are stable,SI_VddOk is asserted.

5. The first Cache test mode command can be presented at the pins fiveSI_ClkIn cycles afterSI_VddOk is asserted.

SI_ClkIn

SI_VddOk

SI_Reset
SI_ColdReset

>=100 ns

EB_SysAD[31:0]
EB_SysADP[3:0]

EB_SysVld

EB_PrcAD[31:0]
EB_PrcAD[3:0]

Earliest Cache Test
Mode Command here

SI_PLLBypass

SI_CkRatio[1]

TS_TCmd[1]

Vdd
VddP

>= 5 SI_ClkIn cycles
MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10 233

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

Chapter 12 20Kc Test Features

ence as
:

Figure 12-2 Entry into Cache Test Mode during a ColdReset Sequence

12.1.4 Exit from Cache Test Mode

It is possible to exit Cache Test Mode and resume normal operation by following the steps for a Cold Reset sequ
described in Chapter 9, “Reset and Initialization.” The following steps summarize the sequence of events required

• SI_VddOK is deasserted.

• The configuration signalsSI_PLLBypass andTS_TCmd[3:0] are reset to their desired state.

• OnceSI_PLLBypass andTS_TCmd[3:0] have been stable for at least fiveSI_ClkIn cycles,SI_VddOK is asserted.

• SI_Reset andSI_ColdReset are then deasserted no sooner than 120 microseconds after the assertion ofSI_VddOK,
after which normal operation is resumed.

12.1.5 Cache Test Mode Commands

There are three supported cache test mode commands:

• Normal Read: This command can be used to read any one of the four different cache arrays. The

• Normal Write: This command can be used to write any one of the four different cache arrays.

• Write Same Data: This command can be used to write any one of the four different cache arrays.

SI_ClkIn

SI_VddOk

SI_Reset
SI_ColdReset

>=100 ns

EB_SysAD[31:0]
EB_SysADP[3:0]

EB_SysVld

EB_PrcAD[31:0]
EB_PrcAD[3:0]

Earliest Cache Test
Mode Command here

SI_PLLBypass

SI_CkRatio[1]

TS_TCmd[1]
>= 5 SI_ClkIn cycles
234 MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

12.1 Cache Test Mode

can read

te parity
d.

uantum

 a
of the

ght bits

of the

y is

 of bus
12.1.6 Read/Write Granularity

The read/write granularity depends on the operation being performed.

12.1.6.1 Read Granularity

For the purpose of read operations, the cache arrays are treated as word-addressed memories. A read operation
a maximum of 36 bits for each command.

In the case of the ICache and DCache data arrays, this corresponds to a word of data and its associated 4-bit, by
field. The actual word within a 32-byte cache line that is read is determined by bits [4:2] of the address provide

Since each entry in the DCache Tag is only 128 bits wide, the read operation on the DCache Tag results in a read q
of 28 bits. The line whose corresponding tag field is read is determined by bits [12:5] of the address provided.

The ICache Tag is treated in a special way. Since each entry of the ICache Tag contains 46 bits, it is treated as
doubleword where a read of the lower word, as specified by setting address bit [4] to zero provides the lower word
tag, whereas a read of the upper word, which is specified by setting address bit [4] to 1 provides the remaining ei
of the tag.

12.1.6.2 Write Granularity

A write of both the data tag and data arrays write an entire cache line worth of data. Thus the write granularity
DCache and ICache Data Arrays is equal to 32 bytes of data and its associated four bytes of parity.

The write granularity of the DCache Tag Array is therefore 28 bits. The write granularity of the ICache Tag Arra
therefore 46 bits.

12.1.7 Encodings

The encoding of the signals involved in the transactions depends on the type of bus cycle. There are two types
cycles:

• Address/Command Cycle - These are used to transfer the actual command.

• Data Cycles - These are used to transfer read/write data.

Table 12-1 SysAD[31:0] Encoding for Address/Command Cycles

EB_SysAD
Bit

DCache
Data
Array

 Read

DCache
Tag

Array

 Read

ICache
Data
Array

 Read

ICache
Tag

Array

 Read

DCache
Data

Array

 Write

DCache
Tag

Array

 Write

ICache
Data
Array

 Write

ICache
Tag

Array

 Write

1:0 Unused

Unused

Unused

Unused
Unused Unused Unused Unused

 2

Address Address
 3

 4
Address

12:5 Address Address Address Address Address

14:13 Way Way Way Way Way Way Way Way

15 0 0 0 0 1 1 1 1
MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10 235

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

Chapter 12 20Kc Test Features
17:16 00 10 01 11 00 10 01 11

18
Unused Unused Unused Unused

Write

Same
Data

Write
Same
Data

Write
Same
Data

Write
Same
Data

31:19 Unused Unused Unused Unused

Table 12-1 SysAD[31:0] Encoding for Address/Command Cycles (Continued)

EB_SysAD
Bit

DCache
Data
Array

 Read

DCache
Tag

Array

 Read

ICache
Data
Array

 Read

ICache
Tag

Array

 Read

DCache
Data

Array

 Write

DCache
Tag

Array

 Write

ICache
Data
Array

 Write

ICache
Tag

Array

 Write
236 MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

12.1 Cache Test Mode

is not
Note: TheSysADP[3:0] signals represent the data that is written into the parity fields of the caches. However, it
required that the data transferred on this bus during Cache Test Mode represent actual calculated parity.

Table 12-2 SysAD[31:0] Encoding for Write Data Cycles

EB_SysAD
bit

D/I Cache Data
Array

 Write Cycle 0-7

DCache Tag
Array

Write Cycle 0

DCache Tag
Array

Write Cycle 1

ICache Tag
Array

Write Cycle 0

ICache Tag
Array

Write Cycle 1

2:0

Data

Tag

Unused

Tag

Asid[7:5]

3 Global

4 Valid

5 LRF

6 Lock

7 Endian

8 FetchSeg[63]

9 FetchSeg[62]

10 FetchSeg[61]

11 FetchSeg[60]

12 FetchSeg[59]

13 Parity

22:14

Unused

23 Valid

24 Dirty

25 LRF

26 Lock

27 Parity

Asid[4:0]

28

Unused
29

30

31

Table 12-3 EB_SysADP[3:0] Encoding for Write Data Cycles

EB_SysADP bit D/ICache Data Array Write Cycle 0-7 D/ICache Tag Array Write Cycle 0-1

0 Parity forEB_SysAD[7:0]

Unused
1 Parity forEB_SysAD[15:8]

2 Parity forEB_SysAD[23:16]

3 Parity forEB_SysAD[31:24]
MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10 237

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

Chapter 12 20Kc Test Features

, it is
Note: TheEB_PrcADP[3:0]signals represent the data that is written into the parity fields of the caches. However
not required that the data transferred on this bus during Cache Test Mode represent actual calculated parity.

Table 12-4 EB_PrcAD[31:0] Encoding for Read Data Cycles

EB_PrcAD
Bit

D/ICache Data
Array

DCache Tag
Array

ICache Tag Array
(Address bit 4 = 0)

ICache Tag Array
(Address bit 4 = 1)

2:0

Data

Tag

Tag

Asid[7:5]

3 Global

4 Valid

5 LRF

6 Lock

7 Endian

8 FetchSeg[63]

9 FetchSeg[62]

10 FetchSeg[61]

11 FetchSeg[60]

12 FetchSeg[59]

13 Parity

22:14

Unused

23 Valid

24 Dirty

25 LRF

26 Lock

27 Parity

Asid[4:0]

28

Unused
29

30

31

Table 12-5 EB_PrcADP[3:0] Encoding for Read Cycles

EB_PrcADP bit D/ICache Data Array Read Cycles

0 Parity for EB_PrcAD[7:0]

1 Parity for EB_PrcAD[15:8]

2 Parity for EB_PrcAD[23:16]

3 Parity for EB_PrcAD[31:24]
238 MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

12.1 Cache Test Mode

opriate
le.

ropriate

t
no new
12.1.8 Protocols

12.1.8.1 Normal Read

This command is used to read any one of the four different cache arrays, by applying an address and the appr
command on theEB_SysAD[31:0]pins. TheEB_SysVldsignal is asserted to indicate a valid Command/Address cyc

The read data can then be observed for a single cycle on theEB_PrcAD[31:0] andEB_PrcADP[3:0]pins a certain
number of cycles later. The read latency is variable and depends on the array being read.Table 12-6shows the latencies
for the different cache arrays. TheEB_SysAD[3:0] bus is unused during a normal read cycle.

Figure 12-3 Normal Read Cycle

12.1.8.2 Normal Write

This command can be used to write any one of the four different cache arrays, by applying an address and the app
command on theEB_SysAD[31:0] pins and by providing the data to be written in subsequent cycles on the
EB_SysAD[31:0] andEB_SysADP[3:0] pins.EB_SysVldis asserted during the Address/Command cycle, but is no
asserted during subsequent data cycles. The last data cycle must be followed by an empty cycle, where no where
command is issued.The number of data cycles is dependent on the array being written.Table 12-7indicates the number
of data cycles required for each array.

Table 12-6 Cache Test Mode Read Latency

Cache Array
Read Latency in
System Clocks

Data Cache Data Array 8

Data Cache Tag Array 9

Instruction Cache Data Array 8

Instruction Cache Tag Array 8

Table 12-7 Normal Write Command

Cache Array
Number of
Data Cycles

Rep Rate
Cycles

Data Cache Data Array 8 10

Data Cache Tag Array 2 4

Instruction Cache Data Array 8 10

SI_ClkIn

EB_SysAD[31:0]

EB_SysVld

EB_PrcAD[31:0]
EB_PrcADP[3:0]

Read Latency

Addr

Data
MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10 239

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

Chapter 12 20Kc Test Features

ivalent
cycles.

ropriate
le.
mand
y
 Write

ces are

ed
Figure 12-4shows the Normal Write sequence used for Data and Instruction Cache Tag Write commands. The equ
figure for Data and Instruction Cache Data Writes can be extrapolated by adding the appropriate number of data

Figure 12-4 Data/Instruction Cache Tag Normal Write

12.1.8.3 Write Same Data

This command can be used to write any one of the four different cache arrays, by applying an address and the app
command on theEB_SysAD[31:0]pins. TheEB_SysVldsignal is asserted to indicate a valid Command/Address cyc
The data to be written into the arrays is obtained from the last Normal Write Command. The Write Same Data com
must be preceded by either a Normal Write Command or another Write Same Data Command. The cache arra
referenced by the Write Same Data command cannot be different from the one referenced by the prior Normal
Command or Write Same Data Command.

The Write Same Data Command is identical for all four arrays.

Figure 12-5 Write Same Data Command

12.2 PLL Bypass Mode

PLL Bypass Mode can be entered via a Power-On Reset Sequence or a Cold Reset Sequence. These sequen
described in the chapter on Reset and Initialization. To put the 20Kc processor in PLL Bypass Mode, theSI_PLLBypass
pin must be asserted and theSI_CkRatio[2:0] pins must be set to the value of 000. As shown in the above mention
sequences, these configuration pins can be toggled only whenSI_VddOk is deasserted and the earliest thatSI_VddOk
can be reasserted is 100 ns after one of these inputs has toggled.

Instruction Cache Data Array 2 4

Table 12-7 Normal Write Command (Continued)

Cache Array
Number of
Data Cycles

Rep Rate
Cycles

SI_ClkIn

EB_SysAD[31:0]

EB_SysVld

Repeat Rate

Addr Data 0 Data 1
Empty
Cycle

SI_ClkIn

EB_SysAD[31:0]

EB_SysVld

Rep Rate

Addr
Empty
Cycle
240 MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

12.3 BIST (Built-In Self Test)

core.
Cache

 files or

rns to
sed on the
o flag
 the
als as

t to
sary
om the
d out

a, and
he
ve at the
ceed the

a single
multiple
without
r this
12.3 BIST (Built-In Self Test)

This section describes the implementation of Built-In Self Test (BIST) for the Cache Memory Arrays on the 20Kc
The BIST approach described here is for at-speed testing of Tag and Data RAM arrays in the Instruction and Data
on the 20Kc core. This approach is not intended for smaller memory arrays on the 20Kc core, such as register
TLB.

12.3.1 Overview

Figure 12-6shows a high-level block diagram of the BIST architecture. The BIST module applies a series of patte
the Memory Module and then compares the outputs against a set of expected responses. The patterns are ba
March family of algorithms and are highly regular and deterministic. This allows the use of a simple comparator t
a failure. The signals from the BIST module to the Memory Module are muxed with the normal input signals to
Memory. The location of these muxes has been chosen to minimize the impact on the timing of the normal sign
well as the existing layout of the caches.

Figure 12-6 Integration of BIST with Memory

The current implementation of memory BIST provides only a Pass/Fail indication on a device. An enhancemen
provide failure diagnostics at the very first failure can be implemented. This can be done by latching the neces
signals at the first failure point. These signals could include the address of the memory location, the data output fr
memory and the actual operation within the test algorithm being applied. This latched data can then be scanne
serially.

Several memories can be tested in parallel with a single memory BIST module, in which case the address, dat
control must be distributed to all the tested memories, and a single compare result must be the generated for t
miscompare signal. Parallel testing can reduce test time. On the other hand, since many memory arrays are acti
same time, parallel testing also consumes more power, and in some cases, this might cause BIST mode to ex
power specification of the chip.

On the 20Kc processor, the Data and Instruction Caches are tested in parallel by independent BIST modules and
miscompare result is generated for the miscompare signal. The Data and Instruction Caches are organized in
ways and banks, which also can be accessed in parallel. However, bank or way parallel testing is not possible
significant redesign because the output data from multiple banks is muxed onto a common output data bus. Fo
reason, the intention is to test the banks within each cache sequentially.

=

Memory

Memory
BIST

Module

gclk

greset

BistInvoke

BistFail

BistDone

addr

write

read

data

miscompare

TS_BistInvoke

Memory Module

Pipe
Regs

Cmp.
Data

Normal signals

data

BistHold
(TS_Reserved7)
MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10 241

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

Chapter 12 20Kc Test Features

d

12.3.1.1 Interface Signals

The chip-level interface signals needed for Memory BIST are listed inTable 12-8.

BIST testing is done while reset is applied to the processor. TheTS_BistInvoke signal must be asserted and deasserte
while reset is applied. The test is finished whenTS_BistDone is asserted. OnceTS_BistDone is asserted,TS_BistDone
andTS_BistFail maintain their status as long as TS_BistInvoke is asserted. TheTS_BistFail andTS_BistDone signals
are deasserted a few clock cycles after the deassertion ofTS_BistInvoke. TS_BistHold selects the BIST algorithm and
extends the delay periods of the IFA-13 algorithm. IfTS_BistHold is asserted withTS_BistInvoke, the IFA-13 BIST
algorithm is selected; otherwise the March C+ algorithm is selected. The algorithms are described inSection 12.3.2,
"Algorithms for Memory Test".

12.3.1.2 External Signal Behavior

TheFigure 12-7 show the waveform to select IFA-13 and March C+ algorithm. TheFigure 12-8 shows an overall
waveform for BIST testing using March C+.

Figure 12-7 BIST algorithm selection

Table 12-8 Chip-Level Memory BIST Interface for the 20Kc Processor

Signal Name Dir Description

TS_BistInvoke I BIST testing is initiated when this signal is asserted. BIST is terminated
when this signal is deasserted.

TS_BistHold 1

1) Selects BIST algorithm in the first cycle theTS_BistInvoke is asserted.

 2) Controls the retention test duration during the delay period of the
IFA-13 algorithm

TS_BistFail O Asserted to indicate that the test has failed.

TS_BistDone O Asserted when the test is finished, either successfully or with fail.

start/IFA-13

SI_ClkIn

SI_Reset

TS_BistInvoke

TS_BistFail

TS_BistDone

TS_BistHold
(TS_Reserved7)

start/March C+

SI_ClkIn

SI_Reset

TS_BistInvoke

TS_BistFail

TS_BistDone

TS_BistHold
(TS_Reserved7)
242 MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

12.3 BIST (Built-In Self Test)
An example of external signal behavior for a memory test is shown inFigure 12-8.

Figure 12-8 External Signal Behavior for a Memory Test

The following notation describes how TS_BistHold(TS_Reserved7) needs to be asserted for retention testing.

Legend :
w : wait withTS_BistHold(TS_Reserved7) = 0
hzero : assertTS_BistHold(TS_Reserved7) as required for retention 0 testing
hone : assertTS_BistHold(TS_Reserved7) as required for retention 1 testing

 Numbers are in internal clock cycles. In order to find the numbers in sys clock(SI_ClkIn) cycles, divide them with the
system ratio. The waveform starts when BistInvoke is asserted.

<6681 w><hzero><1027 w><hone><7208 w><hzero><1027 w><hone><7208 w><hzero><1027 w><hone>
<7208 w><hzero><1027 w><hone><7208 w><hzero><1027 w><hone><7208 w><hzero><1027 w><hone>
<7208 w><hzero><1027 w><hone><7208 w><hzero><1027 w><hone>
<3886 w><hzero><515 w><hone><3624 w><hzero><515 w><hone><3624 w><hzero><515 w><hone>
<3624 w><hzero><515 w><hone><3624 w><hzero><515 w><hone><3624 w><hzero><515 w><hone>
<3624 w><hzero><515 w><hone><3624 w><hzero><515 w><hone>

Note: The above description does not include the assertion ofTS_BistHold(TS_Reserved7) for IFA-13 Algorithm
selection whenTS_BistInvoke is first asserted.

Figure 12-9 shows the retention testing waveform

start/March C+ failure done finish

SI_ClkIn

SI_Reset

TS_BistInvoke

TS_BistFail

TS_BistDone

TS_BistHold
(TS_Reserved7)
MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10 243

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

Chapter 12 20Kc Test Features

e

e is
ected to

d to be
Figure 12-9 Retention Testing Example Waveform

TheBistFail andBistDonesignals indicate the progress and status of the test when the test is ongoing as shown inTable
12-9.

A passing test, with no compare errors, is not indicated on theBistFail signal until theBistDone signal is asserted;
however, theBistFailsignal is sticky so a failing test can be seen by an assertedBistFailsignal as soon as the miscompar
is detected.

12.3.2 Algorithms for Memory Test

For a hard core design the algorithm used for BIST is embedded within the design and once the BIST hardwar
generated, the algorithm is fixed and unchangeable. For this reason the BIST algorithm needs to be carefully sel
cover the most commonly found defects in memory arrays in the target fabrication facility.

The March family of algorithms is commonly used for memory BIST.

The notation for these algorithms uses a number of March elements each with a set of operations.

The operations in each march element is either a bit write of 0, w0, or a bit write of 1, w1, or a bit read expecte
either 0, r0, or expected to be 1, r1.

Table 12-9 Status and Progress Indications

BistFail BistDone Description

0 0 Test is ongoing, and no fail is detected yet.

1 0 Test is ongoing, and fail was detected.

0 1 Test is done, and no fail was detected during the test.

1 1 Test is done, and fail was detected during the test.

SI_ClkIn

SI_Reset

TS_BistInvoke

TS_BistFail

TS_BistDone

TS_BistHold
(TS_Reserved7)

W1 SI_ClkIn
Cycle

W1 = 6681SI_ClkIn Cycles for PLL Bypass Mode
 = 3340SI_ClkIn Cycles for Sys Ratio of 2
 = 2227SI_ClkIn Cycles for Sys Ratio of 3
W2 = 1027SI_ClkIn Cycles For PLL ByPass Mode
 = 513SI_ClkIn Cycles For Sys Ratio of 2
 = 342SI_ClkIn Cycles For Sys Ratio of 3

DATA 0
Retention Testing
Hold Period

W2 SI_ClkIn
Cycle

DATA 1
RetentionTesting
Hold Period
244 MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

12.3 BIST (Built-In Self Test)

g
.

e

uiring

of
The march test notation prescribes that the memory is accessed bitwise.

An example of a march test is shown inFigure 12-10.
.

Figure 12-10 Example of March Test Written in March Test Notation

The test in the example has two march elements, M0 and M1, and requires three operations per memory bit, first doin
one operation per bit for increasing addresses, and then doing two operations per bit for decreasing addresses

12.3.2.1 March C+ Algorithm

The March C+ covers the following faults:

• Address faults

• Stuck at faults

• Transition faults

• Coupling faults

The March C+ algorithm requires 14 operations for each memory bit.Figure 12-11 shows the test using March test
notation.

Figure 12-11 March C+ Algorithm in March Test Notation

12.3.2.2 IFA-13 Algorithm

The IFA-13 algorithm requires 16 operations for each memory location and has two delays in the algorithm. Th
algorithm tests the same faults as the March C+ algorithm and additionally tests for data retention faults.

The IFA-13 algorithm is similar to the March C+ algorithm with additional delays and march elements, thus req
16 operations for each memory bit and additional cycles for the retention delay. The algorithm is shown inFigure 12-12
using March test notation.

Figure 12-12 IFA-13 Algorithm in March Test Notation

The BIST controllers on the 20Kc core apply to either the March C+ or IFA-13 algorithms for BIST. IfTS_BistHoldis
asserted in the first cycle thatTS_BistInvoke is asserted, the IFA-13 algorithm is selected; otherwise the March C+
algorithm is selected. After the BIST algorithm selection,TS_BistHold can extend the one cycle delay periods of the
IFA-13 algorithm. In particular whenTS_BistHoldis asserted during a delay period, it pauses both BIST controllers
the 20Kc core. During any other period,TS_BistHold is ignored.

12.3.3 BIST Integration on 20Kc Cache Memories

For BIST purposes, the 20Kc cache memories can be partitioned into four memory modules:

{ ⇑(w0); ⇓(r0,w1) }
M0 M1

{ ⇑(w0); ⇑(r0,w1,r1); ⇑(r1,w0,r0); ⇓(r0,w1,r1); ⇓(r1,w0,r0); ⇓(r0) }
M0 M1 M2 M3 M4 M5

{ ⇑(w0); ⇑(r0,w1,r1); ⇑(r1,w0,r0); ⇓(r0,w1,r1); ⇓(r1,w0,r0); delay; ⇓(r0); ⇓(w1); delay; ⇓(r1); }
M0 M1 M2 M3 M4 M5 M6 M7
MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10 245

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

Chapter 12 20Kc Test Features

 arrays
memory

ICache
• Data Cache RAM Array: 32 KBytes in size

• Data Cache Tag Array: 4 x 256 x 28 bits in size

• Instruction Cache RAM Array: 32 KBytes in size

• Instruction Cache Tag Array: 4 x 256 x 46 bits in size

12.3.4 Cycles for Memory BIST Testing

The Instruction Cache is tested in parallel with the Data Cache. However, within each cache, the RAM and Tag
are tested sequentially. The read and write accesses during BIST are done along these granularities for the four
arrays:

• Data Cache RAM Array: dword (8 bytes or 72 bits)

• Data Cache Tag Array: 28 bits

• Instruction Cache RAM Array: half line (16 bytes or 144 bits)

• Instruction Cache Tag Array: 46 bits

The total number of memory units tested is:

• DCache_Ram = 4096

• ICache_Ram = 2048

• DCache_Tag = (4 * 256) =1024

• ICache_Tag = (4 * 256) = 1024

The total number of cycles for a March C+ test using 14 operations per memory unit and running the DCache and
in parallel is then:

CycleMarch C+ = 14 * (4096+1024) = 71680 cycles

The number of cycles for an IFA-13 test using 16 operations per bit plus delay is then:

CyclesIFA-13 = 81920 cycles + 4 * 2 * 8 delay cycles
246 MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

ns:

der also
nd

ations

ed to
rams
Chapter 13

Instruction Set Architecture

The 20Kc ISA is fully compliant with the MIPS64 instruction set. The MIPS64 ISA includes the following instructio

• The MIPS V CPU instructions

• The MIPS V FPU instructions

• A set of new instructions targeted at embedded applications.

• The instructions that act as the ISA interface to the MIPS Privileged Resource Architecture

This specification does not describe many of these instructions in any detail because it is assumed that the rea
has access to the most recent copy of the two-volume set entitled MIPS RISC Architecture. Only differences a
additions are described in this document.

This chapter contains the following sections:

• Section 13.1, "CPU Architecture"

• Section 13.2, "FPU Architecture"

• Section 13.3, "Coprocessor Architecture"

• Section 13.4, "Privileged Instruction Set Architecture"

• Section 13.5, "EJTAG Support Instructions"

• Section 13.6, "Instruction Bit Encoding"

• Section 13.7, "MIPS64 Instruction Descriptions"

13.1 CPU Architecture

13.1.1 CPU Register Overview

The MIPS64 Architecture defines the following CPU registers:

• 32 64-bit general purpose registers (GPRs)

• a pair of special-purpose registers to hold the results of integer multiply, divide, and multiply-accumulate oper
(HI and LO)

• a special-purpose program counter (PC), which is affected only indirectly by certain instructions—it is not an
architecturally visible register.

A MIPS64 processor always produces a 64-bit result, even for those instructions which are architecturally defin
operate on 32 bits. Such instructions typically sign-extend the 32-bit result into 64 bits. In so doing, 32-bit prog
work as expected, even though the registers are actually 64 bits wide rather than 32.
MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10 247

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

Chapter 13 Instruction Set Architecture

ing in
The BE
or is

ut pin of
gister.

ot
ocessor

 to

were
ngly
us
Figure 13-1 CPU Registers in MIPS64 Native Mode

13.1.2 Endianness

Compliant implementations of the MIPS64 Architecture must be bi-endian. That is, they must be capable of runn
either a big-endian or a little-endian byte order, as selected by an implementation-specific power-up sequence.
bit in theConfig register, set as part of the power-up sequence, indicates the endian mode in which the process
running. It is implementation-dependent whether reverse-endian mode is implemented.

The 20Kc processor is bi-endian. The endianness mode is selected by appropriately setting the BigEndian inp
the processor. The 20Kc processor also supports the reverse endian mode through the RE bit in the Status Re

13.1.3 CPU Instruction Overview

Table 13-1 throughTable 13-9 list the CPU instructions that are part of the MIPS64 ISA. If 64-bit operations are n
enabled, certain instructions, as described in the Instruction Bit Encoding tables, are not legal and result in a Copr
Unusable Exception or Reserved Instruction Exception, as appropriate to the type of instruction.

Note: Although the Branch Likely instructions are included in this specification, software is strongly encouraged
avoid use of the Branch Likely instructions because they will be removed from a future revision of the MIPS64
architecture. The Branch Likely instructions were added to the ISA at a time when processor implementations
much simpler. Since that time, implementation of the Branch Likely instructions has been shown to be increasi
difficult and costly on processors with aggressive branch prediction. Continued use by software results in serio

General-Purpose Registers

r0 (hardwired to zero)
r1
r2
r3
r4
r5
r6
r7
r8
r9
r10
r11
r12
r13
r14
r15
r16
r17
r18
r19
r20
r21
r22
r23
r24
r25
r26
r27
r28
r29
r30

r31 (link register)

HI
LO

PC

Special-Purpose Registers

63 0

63 063 0
248 MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

13.1 CPU Architecture

are listed
performance issues as such processor designs penetrate the embedded market. The Branch Likely instructions
in Table 13-8 andTable 13-15.

Table 13-1 CPU Load, Store, and Memory Control Instructions

Mnemonic Instruction

Original
MIPS ISA

Level

LB Load Byte I

LBU Load Byte Unsigned I

LH Load Halfword I

LHU Load Halfword Unsigned I

LW Load Word I

LWL Load Word Left I

LWR Load Word Right I

SB Store Byte I

SH Store Halfword I

SW Store Word I

SWL Store Word Left I

SWR Store Word Right I

LL Load Linked Word II

SC Store Conditional Word II

SYNC Synchronize Memory Operations II

LD Load Doubleword III

LDL Load Doubleword Left III

LDR Load Doubleword Right III

LLD Load Linked Doubleword III

LWU Load Word Unsigned III

SCD Store Conditional Doubleword III

SD Store Doubleword III

SDL Store Doubleword Left III

SDR Store Doubleword Right III

PREF Prefetch Memory Data IV

PREFX Prefetch Memory Data Indexed IV
MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10 249

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

Chapter 13 Instruction Set Architecture
Table 13-2 CPU Arithmetic Instructions

Mnemonic Instruction

Original
MIPS ISA

Level

ADD Add Word I

ADDI Add Immediate Word I

ADDIU Add Immediate Unsigned Word I

ADDU Add Unsigned Word I

DIV Divide Word I

DIVU Divide Unsigned Word I

MULT Multiply Word I

MULTU Multiply Unsigned Word I

SLT Set on Let Than I

SLTI Set on Less Than Immediate I

SLTIU Set on Less Than Immediate Unsigned I

SLTU Set on Less Than Unsigned I

SUB Subtract Word I

SUBU Subtract Unsigned Word I

DADD Add Doubleword III

DADDI Add Immediate Doubleword III

DADDIU Add Immediate Unsigned Doubleword III

DADDU Add Unsigned Doubleword III

DDIV Divide Doubleword III

DDIVU Divide Unsigned Doubleword III

DMULT Multiply Doubleword III

DMULTU Multiply Unsigned Doubleword III

DSUB Subtract Doubleword III

DSUBU Subtract Unsigned Doubleword III

Table 13-3 CPU Logical Instructions

Mnemonic Instruction

Original
MIPS ISA

Level

AND Logical AND I

ANDI Logical AND Immediate I

LUI Load Upper Immediate I

NOR Logical NOR I
250 MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

13.1 CPU Architecture
OR Logical OR I

ORI Logical OR Immediate I

XOR Logical XOR I

XORI Logical XOR Immediate I

Table 13-4 CPU Move Instructions

Mnemonic Instruction

Original
MIPS ISA

Level

MFHI Move from HI I

MFLO Move from LO I

MTHI Move to HI I

MTLO Move to LO I

MOVF1 Move Conditional on Floating-Point False IV

MOVN Move Conditional on Not Zero IV

MOVT1 Move Conditional on Floating-Point True IV

MOVZ Move Conditional on Zero IV

1. These instructions require a floating-point unit and can be subsetted out if no floating-point unit is implemented.

Table 13-5 CPU Shift Instructions

Mnemonic Instruction

Original
MIPS ISA

Level

SLL Shift Word Left Logical I

SLLV Shift Word Left Logical Variable I

SRA Shift Word Right Arithmetic I

SRAV Shift Word Right Arithmetic Variable I

SRL Shift Word Right Logical I

SRLV Shift Word Right Logical Variable I

DSLL Shift Doubleword Left Logical III

DSLL32 Shift Doubleword Left Logical + 32 III

DSLLV Shift Doubleword Right Logical Variable III

DSRA Shift Doubleword Right Arithmetic III

DSRA32 Shift Doubleword Right Arithmetic + 32 III

Table 13-3 CPU Logical Instructions

Mnemonic Instruction

Original
MIPS ISA

Level
MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10 251

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

Chapter 13 Instruction Set Architecture
DSRAV Shift Doubleword Right Arithmetic Variable III

DSRL Shift Doubleword Right Logical III

DSRL32 Shift Doubleword Right Logical + 32 III

DSRLV Shift Doubleword Right Logical Variable III

Table 13-6 CPU Branch and Jump Instructions

Mnemonic Instruction

Original
MIPS ISA

Level

BEQ Branch on Equal I

BGEZ Branch on Greater Than or Equal Zero I

BGEZAL Branch on Greater Than or Equal Zero and Link I

BGTZ Branch on Greater Than Zero I

BLEZ Branch on Less Than or Equal Zero I

BLTZ Branch on Less Than Zero I

BLTZAL Branch on Less Than Zero and Link I

BNE Branch on Not Equal I

J Jump I

JAL Jump and Link I

JALR Jump and Link Register I

JR Jump Register I

Table 13-7 CPU Trap Instructions

Mnemonic Instruction

Original
MIPS ISA

Level

BREAK Breakpoint I

SYSCALL System Call I

TEQ Trap if Equal II

TEQI Trap if Equal Immediate II

TGE Trap if Greater Than or Equal II

TGEI Trap if Greater Than or Equal Immediate II

TGEIU Trap if Greater Than or Equal Immediate Unsigned II

TGEU Trap if Greater Than or Equal Unsigned II

Table 13-5 CPU Shift Instructions

Mnemonic Instruction

Original
MIPS ISA

Level
252 MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

13.1 CPU Architecture
TLT Trap if Less Than II

TLTI Trap if Less Than Immediate II

TLTIU Trap if Less Than Immediate Unsigned II

TLTU Trap if Less Than Unsigned II

TNE Trap if Not Equal II

TNEI Trap if Not Equal Immediate II

Table 13-8 Obsolete1 Branch Instructions

Mnemonic Instruction

Original
MIPS ISA

Level

BEQL Branch on Equal Likely II

BGEZALL Branch on Greater Than or Equal Zero and Link Likely II

BGEZL Branch on Greater Than or Equal Zero Likely II

BGTZL Branch on Greater Than Zero Likely II

BLEZL Branch on Less Than or Equal Zero Likely II

BLTZALL Branch on Less Than Zero and Link Likely II

BLTZL Branch on Less Than Zero Likely II

BNEL Branch on Not Equal Likely II

1. Software is strongly encouraged to avoid use of the Branch Likely instructions because they will be removed from
a future revision of the MIPS64 architecture.

Table 13-9 Embedded Application Instructions

Mnemonic Instruction

Original
MIPS ISA

Level

CLO Count Leading Ones in Word MIPS32

CLZ Count Leading Zeros in Word MIPS32

DCLO Count Leading Ones in Doubleword MIPS64

DCLZ Count Leading Zeros in Doubleword MIPS64

MADD Multiply and Add Word MIPS32

MADDU Multiply and Add Unsigned Word MIPS32

MSUB Multiply and Subtract Word MIPS32

MSUBU Multiply and Subtract Unsigned Word MIPS32

Table 13-7 CPU Trap Instructions

Mnemonic Instruction

Original
MIPS ISA

Level
MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10 253

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

Chapter 13 Instruction Set Architecture

FPRs

 and
13.2 FPU Architecture

13.2.1 FPU Register Overview

The MIPS64 Architecture defines the following FPU registers:

• 32 64-bit floating-point registers (FPRs)

• Five FPU control registers

For compatibility with MIPS32 processors, a MIPS64 processor can be configured to run in a mode in which the
are treated as 32 32-bit registers, each of which is capable of storing only 32-bit data types. In this mode, the
double-precision floating-point (type D) data type is stored in even-odd pairs of FPRs; the long-integer (type L)
paired single (type PS) data types are not supported.

Figure 13-2 FPU Registers if StatusFR is 1

MUL Multiply Word to Register MIPS32

SSNOP Superscalar Inhibit NOP MIPS32

Table 13-9 Embedded Application Instructions

Mnemonic Instruction

Original
MIPS ISA

Level

General-Purpose Registers

FCR0

FCR25

Special-Purpose Registers

FCR26

FCR28

FCSR

f0
f1
f2
f3
f4
f5
f6
f7
f8
f9
f10
f11
f12
f13
f14
f15
f16
f17
f18
f19
f20
f21
f22
f23
f24
f25
f26
f27
f28
f29
f30
f31

63 0

31 0
254 MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

13.2 FPU Architecture

red
n the
e

Figure 13-3 FPU Registers if StatusFR is 0

13.2.2 FPU Instruction Overview

Table 13-10throughTable 13-15list the FPU instructions that are part of the MIPS64 ISA. If the processor is configu
to run in the mode providing backward compatibility to MIPS32 processors, certain instructions, as described i
Instruction Bit Encoding tables, are not legal and result in a Reserved Instruction exception. This includes thos
instructions that operate on paired single floating-point (type PS) and 64-bit fixed-point (type L) data types.

Table 13-10 FPU Load and Store Instructions

Mnemonic Instruction

Original
MIPS ISA

Level

LWC1 Load Word to Floating-Point I

SWC1 Store Word to Floating-Point I

LDC1 Load Doubleword to Floating-Point II

SDC1 Store Doubleword to Floating-Point II

LDXC1 Load Doubleword Indexed to Floating-Point IV

LWXC1 Load Word Indexed to Floating-Point IV

General-Purpose Registers

FCR0

FCR25

Special-Purpose Registers

FCR26

FCR28

FCSR

U
np

re
di

ct
ab

le

f0

f2

f4

f6

f8

f10

f12

f14

f16

f18

f20

f22

f24

f26

f28

f30

31

0313263

0

MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10 255

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

Chapter 13 Instruction Set Architecture
SDXC1 Store Doubleword Indexed to Floating-Point IV

SWXC1 Store Word Indexed to Floating-Point IV

LUXC1 Load Doubleword Indexed Unaligned to Floating-Point V

SUXC1 Store Doubleword Indexed Unaligned to Floating-Point V

Table 13-11 FPU Arithmetic Instructions

Mnemonic Instruction

Original
MIPS ISA

Level

ABS.fmt Floating-Point Absolute Value I, V

ADD.fmt Floating-Point Add I, V

C.cond.fmt Floating-Point Compare I, V

DIV.fmt Floating-Point Divide I

MUL.fmt Floating-Point Multiply I, V

NEG.fmt Floating-Point Negate I, V

SUB.fmt Floating-Point Subtract I, V

SQRT.fmt Floating-Point Square Root II

MADD.fmt Floating-Point Multiply Add IV, V

MSUB.fmt Floating-Point Multiply Subtract IV, V

NMADD.fmt Floating-Point Negative Multiply Add IV, V

NMSUB.fmt Floating-Point Negative Multiply Subtract IV, V

RECIP.fmt Floating-Point Reciprocal Approximation IV

RSQRT.fmt Floating-Point Reciprocal Square Root Approximation IV

Table 13-12 FPU Move Instructions

Mnemonic Instruction

Original
MIPS ISA

Level

CFC1 Copy Word from Floating-Point Control Register I

CTC1 Copy Word to Floating-Point Control Register I

MFC1 Move Word from FPR I

MOV.fmt Floating-Point Move I

MTC1 Move Word to FPR I

DMFC1 Move Doubleword from FPR III

Table 13-10 FPU Load and Store Instructions

Mnemonic Instruction

Original
MIPS ISA

Level
256 MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

13.2 FPU Architecture
DMTC1 Move Doubleword to FPR III

MOVF.fmt Floating-Point Conditional Move on FP False IV, V

MOVN.fmt Floating-Point Conditional Move on Non-Zero IV, V, MIPS64

MOVT.fmt Floating-Point Conditional Move on FP True IV, V

MOVZ.fmt Floating-Point Conditional Move on Zero IV, V, MIPS64

Table 13-13 FPU Convert Instructions

Mnemonic Instruction

Original
MIPS ISA

Level

CVT.W.fmt Floating-Point Convert to Word Fixed Point I

CVT.D.fmt Floating-Point Convert to Double Floating-Point I, III

CVT.S.fmt Floating-Point Convert to Single Floating-Point I,III,V

CEIL.W.fmt Floating-Point Ceiling to Word Fixed Point II

FLOOR.W.fmt Floating-Point Floor to Word Fixed Point II

ROUND.W.fmt Floating-Point Round to Word Fixed Point II

TRUNC.W.fmt Floating-Point Truncate to Word Fixed Point II

CEIL.L.fmt Floating-Point Ceiling to Long Fixed Point III

CVT.L.fmt Floating-Point Convert to Long Fixed Point III

FLOOR.L.fmt Floating-Point Floor to Long Fixed Point III

ROUND.L.fmt Floating-Point Round to Long Fixed Point III

TRUNC.L.fmt Floating-Point Truncate to Long Fixed Point III

ALNV.PS Floating-Point Align Variable V

CVT.PS.S Floating-Point Convert Pair to Pair Single V

CVT.S.PL Floating-Point Convert Pair Lower to Single V

CVT.S.PU Floating-Point Convert Pair Upper to Single V

PLL.PS Floating-Point Pair Lower Lower V

PLU.PS Floating-Point Pair Lower Upper V

PUL.PS Floating-Point Pair Upper Lower V

PUU.PS Floating-Point Pair Upper Upper V

Table 13-12 FPU Move Instructions

Mnemonic Instruction

Original
MIPS ISA

Level
MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10 257

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

Chapter 13 Instruction Set Architecture

current
13.3 Coprocessor Architecture

The MIPS64 architecture supports the use of an additional coprocessor to perform application-specific tasks. The
version of the 20Kc processor does not support this additional coprocessor.

13.4 Privileged Instruction Set Architecture

13.4.1 Privileged Register Overview

The MIPS64 architecture defines a set of privileged registers as described inChapter 6, “Coprocessor Registers.”

13.4.2 Privileged Instruction Overview

Table 13-16 lists the privileged instructions, which act as the ISA interface to the MIPS Privileged Resource
Architecture.

Table 13-14 FPU Branch Instructions

Mnemonic Instruction

Original
MIPS ISA

Level

BC1F Branch on Floating-Point False I, IV

BC1T Branch on Floating-Point True I, IV

Table 13-15 Obsolete1 FPU Branch Instructions

Mnemonic Instruction

Original
MIPS ISA

Level

BC1FL Branch on Floating-Point False Likely II, IV

BC1TL Branch on Floating-Point True Likely II, IV

1. Software is strongly encouraged to avoid use of the Branch Likely instructions because they will be removed from
a future revision of the MIPS64 architecture.

Table 13-16 Privileged Instructions

Mnemonic Instruction

CACHE Perform Cache Operation

DMFC0 Move Doubleword From Coprocessor Zero

DMTC0 Move Doubleword To Coprocessor Zero

ERET Exception Return

MFC0 Move Word From Coprocessor Zero

MTC0 Move Word To Coprocessor Zero

TLBP Translation Look Aside Buffer Probe
258 MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

13.5 EJTAG Support Instructions
13.5 EJTAG Support Instructions

Table 13-17 lists the EJTAG support instructions that are supported by the MIPS64 architecture. Refer to Ref [1] for
more information about these instructions.

13.6 Instruction Bit Encoding

Table 13-19throughTable 13-33describe the encoding used for the MIPS64 ISA.Table 13-18describes the meaning of
the symbols used in the tables.

TLBR Translation Look Aside Buffer Read

TLBWI Translation Look Aside Buffer Write Indexed

TLBWR Translation Look Aside Buffer Write Random

WAIT Enter Standby Mode

Table 13-17 EJTAG Support Instructions

Mnemonic Instruction

DERET Debug Exception Return

SDBBP Software Debug Breakpoint

Table 13-18 Symbols Used in the Instruction Encoding Tables

Symbol Meaning

∗ Operation or field codes marked with this symbol are reserved for future use. Executing such an
instruction must cause a Reserved Instruction Exception.

δ
(Also italic field name.) Operation or field codes marked with this symbol denotes a field class.
The instruction word must be further decoded by examining additional tables that show values for
another instruction field.

β Operation or field codes marked with this symbol represent a valid encoding for a higher-order
MIPS ISA level. Executing such an instruction must cause a Reserved Instruction Exception.

⊥

Operation or field codes marked with this symbol represent instructions which are not legal if the
processor is configured to be backward compatible with MIPS32 processors. If the processor is
executing in Kernel Mode, Debug Mode, or 64-bit instructions are enabled, execution proceeds
normally. In other cases, executing such an instruction must cause a Reserved Instruction
Exception (non-coprocessor encodings or coprocessor instruction encodings for a coprocessor to
which access is allowed) or a Coprocessor Unusable Exception (coprocessor instruction
encodings for a coprocessor to which access is not allowed).

θ

Operation or field codes marked with this symbol are available to licensed MIPS partners. To
avoid multiple conflicting instruction definitions, the partner must notify MIPS Technologies, Inc.
when one of these encodings is used. If no instruction is encoded with this value, executing such
an instruction must cause a Reserved Instruction Exception (SPECIAL2encodings or coprocessor
instruction encodings for a coprocessor to which access is allowed) or a Coprocessor Unusable
Exception (coprocessor instruction encodings for a coprocessor to which access is not allowed).

σ
Field codes marked with this symbol represent an EJTAG support instruction and implementation
of this encoding is optional for each implementation. If the encoding is not implemented,
executing such an instruction must cause a Reserved Instruction Exception. If the encoding is
implemented, it must match the instruction encoding as shown in the table.

Table 13-16 Privileged Instructions

Mnemonic Instruction
MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10 259

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

Chapter 13 Instruction Set Architecture
ε
Operation or field codes marked with this symbol are reserved for MIPS Application Specific
Extensions. If the ASE is not implemented, executing such an instruction must cause a Reserved
Instruction Exception.

φ Operation or field codes marked with this symbol are obsolete and will be removed from a future
revision of the MIPS64 ISA. Software must avoid using these operation or field codes.

Table 13-19 MIPS64 Encoding of the Opcode Field

opcode bits 28..26

0 1 2 3 4 5 6 7

bits
31..29 000 001 010 011 100 101 110 111

0 000 SPECIALδ REGIMM δ J JAL BEQ BNE BLEZ BGTZ

1 001 ADDI ADDIU SLTI SLTIU ANDI ORI XORI LUI

2 010 COP0δ COP1δ COP2θδ COP1Xδ⊥ BEQL φ BNEL φ BLEZL φ BGTZL φ

3 011 DADDI⊥ DADDIU ⊥ LDL ⊥ LDR ⊥ SPECIAL2δ JALX ε MDMX εδ *

4 100 LB LH LWL LW LBU LHU LWR LWU ⊥

5 101 SB SH SWL SW SDL⊥ SDR⊥ SWR CACHE

6 110 LL LWC1 LWC2θ PREF LLD⊥ LDC1 LDC2 θ LD ⊥

7 111 SC SWC1 SWC2θ * SCD ⊥ SDC1 SDC2θ SD⊥

Table 13-20 MIPS64SPECIAL Opcode Encoding of Function Field

function bits 2..0

0 1 2 3 4 5 6 7

bits 5..3 000 001 010 011 100 101 110 111

0 000 SLL MOVCIδ SRL SRA SLLV * SRLV SRAV

1 001 JR JALR MOVZ MOVN SYSCALL BREAK * SYNC

2 010 MFHI MTHI MFLO MTLO DSLLV ⊥ * DSRLV ⊥ DSRAV ⊥

3 011 MULT MULTU DIV DIVU DMULT ⊥ DMULTU ⊥ DDIV ⊥ DDIVU ⊥

4 100 ADD ADDU SUB SUBU AND OR XOR NOR

5 101 * * SLT SLTU DADD ⊥ DADDU ⊥ DSUB⊥ DSUBU⊥

6 110 TGE TGEU TLT TLTU TEQ * TNE *

7 111 DSLL⊥ * DSRL ⊥ DSRA ⊥ DSLL32⊥ * DSRL32⊥ DSRA32⊥

Table 13-18 Symbols Used in the Instruction Encoding Tables

Symbol Meaning
260 MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

13.6 Instruction Bit Encoding
Table 13-21 MIPS64REGIMM Encoding of rt Field

rt bits
18..16

0 1 2 3 4 5 6 7

bits
20..19 000 001 010 011 100 101 110 111

0 00 BLTZ BGEZ BLTZL φ BGEZL φ * * * *

1 01 TGEI TGEIU TLTI TLTIU TEQI * TNEI *

2 10 BLTZAL BGEZAL BLTZALLφ BGEZALLφ * * * *

3 11 * * * * * * * *

Table 13-22 MIPS64SPECIAL2 Encoding of Function Field

function bits 2..0

0 1 2 3 4 5 6 7

bits 5..3 000 001 010 011 100 101 110 111

0 000 MADD MADDU MUL θ MSUB MSUBU θ θ

1 001 θ θ θ θ θ θ θ θ

2 010 θ θ θ θ θ θ θ θ

3 011 θ θ θ θ θ θ θ θ

4 100 CLZ CLO θ θ DCLZ ⊥ DCLO ⊥ θ θ

5 101 θ θ θ θ θ θ θ θ

6 110 θ θ θ θ θ θ θ θ

7 111 θ θ θ θ θ θ θ SDBBPσ

Table 13-23 MIPS64MOVCI Encoding of tf Bit

tf bit 16

0 1

MOVF MOVT
MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10 261

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

Chapter 13 Instruction Set Architecture
Table 13-24 MIPS64COPz Encoding of rs Field

rs bits
23..21

0 1 2 3 4 5 6 7

bits
25..24 000 001 010 011 100 101 110 111

0 00 MFCz DMFCz⊥ CFCz * MTCz DMTCz⊥ CTCz *

1 01 BCzδ * * * * * * *

2 10
CO δ

3 11

Table 13-25 MIPS64 COPz Encoding of rt Field When rs=BCz

rt bit 16

bit 17 0 1

0 BCzF BCzT

1 BCzFLφ BCzTL φ

Table 13-26 MIPS64COP0 Encoding of rs Field

rs bits
23..21

0 1 2 3 4 5 6 7

bits
25..24 000 001 010 011 100 101 110 111

0 00 MFC0 DMFC0⊥ * * MTC0 DMTC0
⊥ * *

1 01 * * * * * * * *

2 10
CO δ

3 11
262 MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

13.6 Instruction Bit Encoding
Table 13-27 MIPS64COP0 Encoding of Function Field When rs=CO

function bits 2..0

0 1 2 3 4 5 6 7

bits 5..3 000 001 010 011 100 101 110 111

0 000 * TLBR TLBWI * * * TLBWR *

1 001 TLBP * * * * * * *

2 010 * * * * * * * *

3 011 ERET * * * * * * DERET σ

4 100 WAIT * * * * * * *

5 101 * * * * * * * *

6 110 * * * * * * * *

7 111 * * * * * * * *

Table 13-28 MIPS64COP1 Encoding of rs Field

rs bits
23..21

0 1 2 3 4 5 6 7

bits
25..24 000 001 010 011 100 101 110 111

0 00 MFC1 DMFC1⊥ CFC1 * MTC1 DMTC1⊥ CTC1 *

1 01 BC1δ BC1ANY2
δε⊥

BC1ANY4
δε⊥ * * * * *

2 10 Sδ D δ * * W δ L δ⊥ PSδ⊥ *

3 11 * * * * * * * *
MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10 263

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

Chapter 13 Instruction Set Architecture
Table 13-29 MIPS64COP1 Encoding of Function Field When rs=S

function bits 2..0

0 1 2 3 4 5 6 7

bits 5..3 000 001 010 011 100 101 110 111

0 000 ADD SUB MUL DIV SQRT ABS MOV NEG

1 001 ROUND.L
⊥ TRUNC.L ⊥ CEIL.L ⊥ FLOOR.L⊥ ROUND.W TRUNC.W CEIL.W FLOOR.W

2 010 * MOVCFδ MOVZ MOVN * RECIP ⊥ RSQRT⊥ *

3 011 * * * * RECIP2 ε⊥ RECIP1ε⊥ RSQRT1ε⊥ RSQRT2ε⊥

4 100 * CVT.D * * CVT.W CVT.L ⊥ CVT.PS⊥ *

5 101 * * * * * * * *

6 110
C.F

CABS.F
ε⊥

C.UN
CABS.UN

ε⊥

C.EQ
CABS.EQ

ε⊥

C.UEQ
CABS.UEQ

ε⊥

C.OLT
CABS.OLT

ε⊥

C.ULT
CABS.ULT

ε⊥

C.OLE
CABS.OLE

ε⊥

C.ULE
CABS.ULE

ε⊥

7 111
C.SF

CABS.SF
ε⊥

C.NGLE
CABS.NGLE

ε⊥

C.SEQ
CABS.SEQ

ε⊥

C.NGL
CABS.NGL

ε⊥

C.LT
CABS.LT

ε⊥

C.NGE
CABS.NGE

ε⊥

C.LE
CABS.LE

ε⊥

C.NGT
CABS.NGT

ε⊥

Table 13-30 MIPS64COP1 Encoding of Function Field When rs=D

function bits 2..0

0 1 2 3 4 5 6 7

bits 5..3 000 001 010 011 100 101 110 111

0 000 ADD SUB MUL DIV SQRT ABS MOV NEG

1 001 ROUND.L
⊥ TRUNC.L ⊥ CEIL.L ⊥ FLOOR.L⊥ ROUND.W TRUNC.W CEIL.W FLOOR.W

2 010 * MOVCFδ MOVZ MOVN * RECIP ⊥ RSQRT⊥ *

3 011 * * * * RECIP2 ε⊥ RECIP1ε⊥ RSQRT1
ε⊥

RSQRT2
ε⊥

4 100 CVT.S * * * CVT.W CVT.L ⊥ * *

5 101 * * * * * * * *

6 110 C.F
CABS.Fε⊥

C.UN
CABS.UNε⊥

C.EQ
CABS.EQ

ε⊥

C.UEQ|
CABS.UEQ

ε⊥

C.OLT
CABS.OLT

ε⊥

C.ULT
CABS.ULT

ε⊥

C.OLE
CABS.OLE

ε⊥

C.ULE
CABS.ULE

ε⊥

7 111
C.SF

CABS.SF
ε⊥

C.NGLE
CABS.NGLE

ε⊥

C.SEQ
CABS.SEQ

ε⊥

C.NGL
CABS.NGL

ε⊥

C.LT
CABS.LT

ε⊥

C.NGE
CABS.NGE

ε⊥

C.LE
CABS.LE

ε⊥

C.NGT
CABS.NGT

ε⊥
264 MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

13.6 Instruction Bit Encoding
Table 13-31 MIPS64COP1 Encoding of Function Field When rs=W or L1

function bits 2..0

0 1 2 3 4 5 6 7

bits 5..3 000 001 010 011 100 101 110 111

0 000 * * * * * * * *

1 001 * * * * * * * *

2 010 * * * * * * * *

3 011 * * * * * * * *

4 100 CVT.S CVT.D * * * * CVT.PS.PWε⊥ *

5 101 * * * * * * * *

6 110 * * * * * * * *

7 111 * * * * * * * *

1. Format type L is legal only if 64-bit operations are enabled.

Table 13-32 MIPS64COP1 Encoding of Function Field When rs=PS1

function bits 2..0

0 1 2 3 4 5 6 7

bits 5..3 000 001 010 011 100 101 110 111

0 000 ADD SUB MUL * * ABS MOV NEG

1 001 * * * * * * * *

2 010 * MOVCFδ MOVZ MOVN * * * *

3 011 ADDRε * MULR e * RECIP2ε RECIP1ε RSQRT1ε RSQRT2ε

4 100 CVT.S.PU * * * CVT.PW.PS
ε * * *

5 101 CVT.S.PL * * * PLL.PS PLU.PS PUL.PS PUU.PS

6 110 C.F
CABS.Fε

C.UN
CABS.UNε

C.EQ
CABS.EQ

ε

C.UEQ
CABS.UEQ

ε
C.OLT

CABS.OLTε
C.ULT

CABS.ULT
ε

C.OLE
CABS.OLE

ε

C.ULE
CABS.ULE

ε

7 111
C.SF

CABS.SF
ε

C.NGLE
CABS.NGLE

ε

C.SEQ
CABS.SEQ

ε

C.NGL
CABS.NGL

ε
C.LT

CABS.LT ε
C.NGE

CABS.NGE
ε

C.LE
CABS.LEε

C.NGT
CABS.NGT

ε

1. Format type PS is legal only if 64-bit operations are enabled.

Table 13-33 MIPS64COP1 Encoding of tf Bit When rs=S, D, or PS,Function=MOVCF

tf bit 16

0 1

MOVF.fmt MOVT.fmt
MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10 265

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

Chapter 13 Instruction Set Architecture

IPS64
 The
clusion

 of

tus
d

ated,

ible in

 is

r

13.7 MIPS64 Instruction Descriptions

As described earlier, this specification does not include instruction descriptions for all instructions that are in the M
ISA. Rather, it includes by reference the MIPS RISC Architecture document for the majority of the instructions.
following subsections describe only those ISA-related features and any instructions that are new or modified by in
of them in the MIPS64 ISA.

13.7.1 UNPREDICTABLE and UNDEFINED

The termsUNPREDICTABLE andUNDEFINED are used throughout this specification to describe the behavior
the processor in certain cases.UNDEFINED behavior or operations can occur only as the result of executing
instructions in a privileged mode (i.e., in Kernel Mode or Debug Mode, or with the CP0 usable bit set in the Sta
register). Unprivileged software can never causeUNDEFINED behavior or operations. Conversely, both privileged an
unprivileged software can causeUNPREDICTABLE results or operations.

13.7.1.1 UNPREDICTABLE

UNPREDICTABLE results may vary from implementation to implementation, instruction to instruction, or as a
function of time on the same implementation or instruction. Software can never depend on results that are
UNPREDICTABLE . UNPREDICTABLE operations can cause a result to be generated or not. If a result is gener
it is UNPREDICTABLE . UNPREDICTABLE operations can cause arbitrary exceptions.

UNPREDICTABLE results or operations have several implementation restrictions:

• UNPREDICTABLE results must not depend on any data source (memory or internal state) which are inaccess
the current processor mode.

• UNPREDICTABLE operations must not read, write, or modify the contents of memory or internal state which
inaccessible in the current processor mode. For example,UNPREDICTABLE operations executed in user mode
must not access memory or internal state that is only accessible in Kernel Mode or Debug Mode or in anothe
process.

• UNPREDICTABLE operations must not halt or hang the processor.

Table 13-34 MIPS64COP1X Encoding of Function Field1

function bits 2..0

0 1 2 3 4 5 6 7

bits 5..3 000 001 010 011 100 101 110 111

0 000 LWXC1 LDXC1 * * * LUXC1 * *

1 001 SWXC1 SDXC1 * * * SUXC1 * PREFX

2 010 * * * * * * * *

3 011 * * * * * * ALNV.PS *

4 100 MADD.S MADD.D * * * * MADD.PS *

5 101 MSUB.S MSUB.D * * * * MSUB.PS *

6 110 NMADD.S NMADD.D * * * * NMADD.PS *

7 111 NMSUB.S NMSUB.D * * * * NMSUB.PS *

1. COP1X instructions are legal only if 64-bit operations are enabled.
266 MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

13.7 MIPS64 Instruction Descriptions

or as

here is
ocessor
13.7.1.2 UNDEFINED

UNDEFINED operations or behavior can vary from implementation to implementation, instruction to instruction,
a function of time on the same implementation or instruction.UNDEFINED operations or behavior can vary from
nothing to creating an environment in which execution can no longer continue.UNDEFINED operations or behavior
might cause data loss.

There is one implementation restriction withUNDEFINED operations or behavior:

• UNDEFINED operations or behavior must not cause the processor to hang (that is, enter a state from which t
no exit other than powering down the processor). The assertion of any of the reset signals must restore the pr
to an operational state.
MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10 267

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

Chapter 13 Instruction Set Architecture

e
noth-

Imple-
m.

dition is

che and
e that it
13.7.2 Unprivileged Instructions

13.7.2.1 The PREF Instruction

Format:

PREF hint, offset(base) MIPS IV

Purpose:

To move data between memory and cache.

Description:

PREF adds the 16-bit signedoffsetto the contents of GPRbaseto form an effective byte address. Thehint field sup-
plies information about how the addressed data is to be manipulated.

PREF enables the processor to take some action as specified by thehint field, to improve program performance. Th
action taken for a specific PREF instruction is both system and context dependent. Any action, including doing
ing, is permitted as long as it does not change architecturally visible state or alter the meaning of a program.
mentations are expected either to do nothing, or take an action that increases the performance of the progra

PREF does not cause addressing-related exceptions. If it does raise an exception condition, the exception con
ignored. If an addressing-related exception condition is raised and ignored, no data movement occurs.

PREF never generates a memory operation for a location with an uncached memory access type.

For a cached location, the expected and useful action for the processor is to move a block of data between ca
the memory hierarchy. The size of the block transferred is implementation dependent, but software may assum
is at least one cache block.

For the 20Kc processor, the size of the block transferred is always equal to one cache line.

Table 13-35 defines the hint field values.

Table 13-35 PREF Hint Field Encodings

Value Name Data Use and Desired PREF Action

0 load
Use: Prefetched data is expected to be read (not modified)

Action: Fetch data as if for a load.

1 store
Use: Prefetched data is expected to be stored or modified

Action: Fetch data as if for a store.

2-3 Reserved Reserved for future use - not available to implementations.

4 load_streamed

Use: Prefetched data is expected to be read (not modified) but not
reused extensively; it “streams” through the cache

Action: Fetch data as if for a load and place it in the cache so that it
does not displace data prefetched as “retained”

Prefetch PREF

31 0

6 5 5

PREF base hint Offset

21 20 16 1526 25

1 1 0 0 1 1
16
268 MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

13.7 MIPS64 Instruction Descriptions

tions in
t not be

efore the

are to
be truly
Restrictions:

None

Operation:

vAddr ← GPR[base] + sign_extend(offset)
(pAddr, CCA) ← AddressTranslation(vAddr, DATA, LOAD)
Prefetch(CCA, pAddr, vAddr, DATA, hint)

Exceptions:

Prefetch does not take any TLB-related or address-related exceptions under any circumstances.

Programming Notes:

Prefetch cannot access a mapped location unless the translation for that location is present in the TLB. Loca
memory pages that have not been accessed recently might not have translations in the TLB, so prefetch migh
effective for such locations.

Prefetch does not cause addressing exceptions. It does not cause an exception to prefetch using a pointer b
validity of the pointer is determined.

Hint field encodings whose function is described as “streamed” or “retained” convey usage intent from softw
hardware. Software should not assume that hardware always prefetches data in an optimal way. If data is to
retained, software should use the Cache instruction to lock data into the cache.

5 store_streamed

Use: Prefetched data is expected to be stored or modified but not
reused extensively; it “streams” through the cache

Action: Fetch data as if for a store and place it in the cache so that
it does not displace data prefetched as “retained”

6 load_retained

Use: Prefetched data is expected to be read (not modified) and
reused extensively; it should be “retained” in the cache

Action: Fetch data as if for a load and place it in the cache so that it
is not displaced by data prefetched as “streamed”

7 store_retained

Use: Prefetched data is expected to be stored or modified and reused
extensively; it should be “retained” in the cache

Action: Fetch data as if for a store and place it in the cache so that
it is not displaced by data prefetched as “streamed”

8-24 Reserved Reserved for future use - not available to implementations.

25 writeback_invalidate (also
known as nudge)

Use: Data is no longer to be expected to be used

Action: For a writeback cache, schedule a writeback of any dirty
data. At the completion of the writeback, mark as invalid the state
of any cache lines written back.

26-31 Implementation
Dependent

Unassigned by the Architecture - available for implementation
dependent use

This field is unused in the 20Kc core.

Table 13-35 PREF Hint Field Encodings (Continued)

Value Name Data Use and Desired PREF Action
MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10 269

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

Chapter 13 Instruction Set Architecture

ted by

should
nstruc-
13.7.2.2 The PREFX Instruction

Format:

PREFX hint, index(base) MIPS IV

Purpose:

To move data between memory and cache.

Description:

PREFX adds the contents of GPR index to the contents of GPR base to form an effective byte address. Thehint field
supplies information about how the addressed data is to be manipulated.

The only functional difference between the PREF and PREFX instructions is the addressing mode implemen
the two. Refer to the PREF instruction description for all other details, including the encoding of thehint field.

Note, however, that the PREFX instruction is only available on processors that implement floating point, and
only be generated by compilers in situations in which the corresponding load and store indexed floating-point i
tions are generated.

Restrictions:

None

Operation:

if (Status CU1 = 0) then
InitiateCoprocessorUnusableException(1)

endif
vAddr <- GPR[base] + GPR[index]
(pAddr, CCA) <- AddressTranslation(vAddr, DATA, LOAD)
Prefetch(CCA, pAddr, vAddr, DATA, hint)

Exceptions:

Coprocessor Unusable Exception

Prefetch does not take any TLB-related or address-related exceptions under any circumstances.

Programming Notes:

Refer to the corresponding section in the PREF instruction description.

Prefetch Indexed PREFX

31 0

6

COP1X base index hint

11 1021 20 16 1526 25

0 1 0 0 1 1
PREFX

0 0 1 1 1 1

6 5

5

0
0 0 0 0 0
270 MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

13.7 MIPS64 Instruction Descriptions

e
ache as

ress

on

sed

ache.

er
x:

che
13.7.3 Privileged Instructions

13.7.3.1 CACHE Instruction

Format:

CACHE op, offset(base) MIPS64

Purpose:

To perform the cache operation specified byop.

Description:

The 16-bit offset is sign-extended and added to the contents of thebaseregister to form an effective address. Th
effective address is used in one of three ways based on the operation to be performed and the type of c
described inTable 13-36.

Table 13-36 Usage of Effective Address

Operation
Requires an

Type of
Cache Usage of Effective Address

Address Virtual

The effective address is used to address the cache. It is implementation dependent whether an add
translation is performed on the effective address (with the possibility that a TLB Refill or TLB Invalid
exception might occur).

The Instruction Cache in the 20Kc processor is virtual. Cache instructions referencing the Instructi
Cache perform address translation only if they require transactions to go off-chip. The two Cache
instruction types that fall under this category areFill andFetch and Lock.

Address Physical The effective address is translated by the MMU to a physical address. The physical address is then u
to address the cache.

Index N/A

The effective address can be translated by the MMU to a physical address. It is implementation
dependent whether the effective address or the translated physical address are used to index the c

The 20Kc processor uses the translated physical address to index the physical Data Cache. The
Instruction Cache is virtual and therefore always uses the effective address.

Assuming that the total cache size in bytes is CS, the associativity is A, and the number of bytes p
tag is BPT, the following calculations give the fields of the address which specify the way and the inde

OffsetBit <- Log2(BPT)

IndexBit <- Log2(CS / A)

WayBit <- IndexBit + Ceiling(Log2(A))

Way <- AddrWayBit-1..IndexBit

Index <- AddrIndexBit-1..OffsetBit

For a direct-mapped cache, the Way calculation is ignored and the Index value fully specifies the ca
tag. This is shown symbolically inFigure 13-4.

Perform Cache Operation CACHE

31 0

6 5 5 16

CACHE base op Offset

21 20 16 1526 25

1 0 1 1 1 1
MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10 271

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

Chapter 13 Instruction Set Architecture

dex
ould use
Refill

ample,
rted via
e error
haviors

n a

rtion of
hether

ns are

ches the
ion.

cache
ded.
Figure 13-4 Usage of Address Fields to Select Index and Way

A TLB Refill and TLB Invalid (both with cause code equal TLBL) exception can occur on any operation. For in
operations (where the address is used to index the cache but need not match the cache tag), software sh
unmapped addresses to avoid TLB exceptions. This instruction never causes TLB Modified exceptions or TLB
exceptions with a cause code of TLBS nor data Watch exceptions.

A Cache Error exception might occur as a byproduct of some operations performed by this instruction. For ex
if a Writeback operation detects a cache or bus error during the processing of the operation, that error is repo
a Cache Error exception. The Index Load Tag and Index Store Tag CACHE instructions do not trigger cach
exceptions; however, the software must not rely on this behavior. Future processors might have different be
regarding whether these instructions incur cache error exceptions. The reasons for this are:

• The Index Store Tag CACHE instruction is the way to initialize the Instruction cache in the first place.

• The Index Load Tag CACHE instruction is a diagnostic instruction that may be used to probe the cache o
cache error exception.

An Address Error Exception (with cause code equal AdEL) can occur if the effective address references a po
the kernel address space that would normally result in such an exception. It is implementation dependent w
such an exception does occur.

The 20Kcprocessor takes Address Error exceptions on Cache instructions when any of the following conditio
met:

1. It references the Instruction Cache and is aFill or Fetch and Lock type Cache Instruction.

2. It references the Data Cache.

It is implementation dependent whether a data watch is triggered by a cache instruction whose address mat
Watch register address match conditions. The preferred implementation is not to match on the cache instruct

The 20Kc processor does not take Watch Exceptions on Cache instructions.

Bits [17:16] of the instruction specify the cache on which to perform the operation, as follows:

Bits [20:18] of the instruction specify the operation to perform. To provide software with a consistent base of
operations, certain encodings must be supported on all processors. The remaining encodings are recommen

Table 13-37 Encoding of Bits[17:16] of CACHE Instruction

Code Name Cache

0 0 I Primary Instruction

0 1 D Primary Data or Unified Primary

1 0 T Tertiary

1 1 S Secondary

Way

0

Index

OffsetBitIndexBitWayBit

Unused byte index
272 MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

13.7 MIPS64 Instruction Descriptions
Table 13-38 Encoding of Bits [20:18] of the CACHE Instruction

Code Caches Name

Effective
Address
Operand

Type Operation Compliance

0 0 0 I Index Invalidate Index

Set the state of the cache block at the specified
index to invalid.

This required encoding can be used by software
to invalidate the entire instruction cache by
stepping through all valid indices.

Required

D
Index Writeback
Invalidate / Index
Invalidate

Index

For a write-back cache: If the state of the cache
block at the specified index is valid and dirty,
write the block back to the memory address
specified by the cache tag. After that operation is
completed, set the state of the cache block to
invalid. If the block is valid but not dirty, set the
state of the block to invalid.

For a write-through cache: Set the state of the
cache block at the specified index to invalid.

This required encoding can be used by software
to invalidate the entire data cache by stepping
through all valid indices.

Required

0 0 1 I, D Index Load Tag Index

Read the tag for the cache block at the specified
index into the TagLo and TagHi COP0 registers.
If the DataLo and DataHi registers are
implemented, also read the data corresponding to
the byte index into the DataLo and DataHi
registers.

The 20Kc processor implements separate DataLo
and DataHi registers for the Instruction and Data
Caches, termed as IDataLo/IDataHi and
DDataLo and DDataHi respectively. A
doubleword of data is read into these registers.
The double word accessed is determined by bits
<4:3> of the address/index.

The 20Kc processor produces valid values in the
IDataLo and IDataHi registers only if the
CACHE instruction and the instruction following
it were fetched from uncached memory.

Recommended

0 1 0 I, D Index Store Tag Index

Write the tag for the cache block at the specified
index from the TagLo and TagHi COP0 registers.

This required encoding can be used by software
to initialize the entire instruction of data caches
by stepping through all valid indices. Doing so
requires that theTagLo andTagHi registers
associated with the cache be initialized first.

Required

0 1 1 D Create Dirty
Exclusive

Available for implementation-dependent
operation.

The 20Kc processor uses this encoding to define
the Create Dirty Exclusive operation, which is
used to avoid loading data needlessly from
memory when writing new contents into an entire
cache block. If the cache block at the index given
by the Cache instruction, does not contain the
specified address, and the block is dirty, it is
written back to memory. The cache block tag is
then set to the address specified by the Cache
instruction, and the state is set to Dirty Exclusive.

Optional
MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10 273

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

Chapter 13 Instruction Set Architecture
1 0 0 I, D Hit Invalidate Address

If the cache block contains the specified address,
set the state of the cache block to invalid.

This required encoding may be used by software
to invalidate a range of addresses from the
instruction cache by stepping through the address
range by the line size of the cache.

Required

(Instruction
Cache
Encoding
Only)

1 0 1 I Fill Address Fill the cache from the specified address Recommended

D
Hit Writeback
Invalidate / Hit
Invalidate

Address

For a write-back cache: If the cache block
contains the specified address and it is valid and
dirty, write the contents back to memory. After
that operation is completed, set the state of the
cache block to invalid. If the block is valid but not
dirty, set the state of the block to invalid.

For a write-through cache: If the cache block
contains the specified address, set the state of the
cache block to invalid.

This required encoding can be used by software
to invalidate a range of addresses from the data
cache by stepping through the address range by
the line size of the cache.

Required

1 1 0 D Hit Writeback Address

If the cache block contains the specified address
and it is valid and dirty, write the contents back to
memory. After the operation is completed, leave
the state of the line valid, but clear the dirty state.
For a write-through cache, this operation may be
treated as a nop.

Recommended

Table 13-38 Encoding of Bits [20:18] of the CACHE Instruction (Continued)

Code Caches Name

Effective
Address
Operand

Type Operation Compliance
274 MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

13.7 MIPS64 Instruction Descriptions

CP0

he
Restrictions:

Execution of this instruction is legal only if the processor is operating in Kernel Mode or Debug Mode, or if the
enable bit is set in theStatus register. In other circumstances, a Coprocessor Unusable Exception is taken.

The operation of this instruction isUNDEFINED for any operation/cache combination that is not implemented. T
operation of this instruction isUNDEFINED for uncacheable addresses.

Operation:

vAddr <- GPR[base] + sign_extend(offset)
(pAddr, uncached) <- AddressTranslation(vAddr, DataReadReference)
CacheOp(op, vAddr, pAddr)

Exceptions:

TLB Refill Exception

TLB Invalid Exception

Coprocessor Unusable Exception

Address Error Exception

Cache Error Exception

1 1 1 I, D Fetch and Lock Address

If the cache does not contain the specified
address, fill it from memory, performing a
writeback if required, and set the state to valid
and locked. If the cache already contains the
specified address, set the state to locked. In
set-associative or fully-associative caches, the
way selected on a fill from memory is
implementation specific.

In the 20Kc processor, the way selected on a fill
from memory is determined by an LRF (Least
Recently Filled) cache replacement algorithm.

The lock state may be cleared by executing an
Index Invalidate, Index Writeback Invalidate, Hit
Invalidate, or Hit Writeback Invalidate operation
to the locked line, or via an Index Store Tag
operation to the line that clears the lock bit. Note
that clearing the lock state via Index Store Tag is
dependent on the implementation-dependent
cache tag and cache line organization, and that
Index and Index Writeback Invalidate operations
are dependent on cache line organization. Only
Hit and Hit Writeback Invalidate operations are
generally portable across implementations.

It is implementation dependent whether a locked
line is displaced as the result of an external
invalidate or intervention that hits on the locked
line. Software must not depend on the locked line
remaining in the cache if an external invalidate or
intervention would invalidate the line if it were
not locked.

In the 20Kc processor an external invalidate or
intervention causes a locked line to be displaced.

Recommended

Table 13-38 Encoding of Bits [20:18] of the CACHE Instruction (Continued)

Code Caches Name

Effective
Address
Operand

Type Operation Compliance
MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10 275

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

Chapter 13 Instruction Set Architecture

anism

dictable
Programming Notes:

Software must adhere to the following standard mechanism to handle self-modifying code properly (this mech
applies to software that copies code to a memory location for subsequent execution):

1. Write new instructions to “memory” with store instructions.

2. Do a writeback or writeback invalidate on the D-Cache lines that might hold the new instructions.

3. Execute SYNC.

4. Do an invalidate on the I-Cache lines that might hold the old instructions.

5. Jump to the code with an ERET.

The above steps are the standard mechanism that handles self-modifying code on MIPS processors. Pre
behavior is not guaranteed for software that does not follow this mechanism when writing code.
276 MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

13.7 MIPS64 Instruction Descriptions

in the
tion.
13.7.3.2 The TLBP Instruction

Format:

TLBP MIPS64

Purpose:

Find a matching entry in the TLB.

Description:

The Indexregister is loaded with the index of the TLB entry whose contents match the contents of theEntryHi regis-
ter. If no TLB entry matches, the high-order bit of the Index register is set.

Restrictions:

This instruction is legal only if the processor is in Kernel Mode or Debug Mode, or if the CP0 usable bit is set
Status register. In other circumstances, execution of this instruction results in a Coprocessor Unusable Excep

For processors that do not include the standard TLB MMU, the operation of this instruction isUNDEFINED . How-
ever, the preferred implementation is a Reserved Instruction Exception.

The 20Kc processor implements a standard TLB MMU, so this is not an issue.

Operation:

Index <- 1 || UNPREDICTABLE31

for i in 0...TLBEntries-1
if (TLB[i] R = EntryHi R) and

((TLB[i] VPN2 and not (TLB[i] Mask)) =
 (EntryHi VPN2 and not (TLB[i] Mask))) and
(TLB[i] G or (TLB[i] ASID = EntryHi ASID)) then
 Index <- i

endif
endfor

Exceptions:

Coprocessor Unusable Exception

Reserved Instruction Exception (if not implemented)

Machine Check (if implemented and a TLB shutdown condition is detected on a TLB read)

Probe TLB for Matching Entry TLBP

31 0

6 1 19

COP0 CO

2426 25

0 1 0 0 0 0 1
TLBP0

6

0 0 1 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10 277

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

Chapter 13 Instruction Set Architecture

to

 to

ts are
read.

nds to
, these
ed out

in the
tion.

B

rd TLB
13.7.3.3 The TLBR Instruction

Format:

TLBR MIPS64

Purpose:

Read an entry from the TLB.

Description:

TheEntryHi, EntryLo0, EntryLo1, andPageMaskregisters are loaded with the contents of the TLB entry pointed
by the Indexregister. Note that the value written to theEntryHi, EntryLo0, andEntryLo1registers can be different
from that originally written to the TLB via these registers as follows:

• The value returned in the VPN2 field of theEntryHi register can have those bits reset to zero corresponding
the one bits in the Mask field of the TLB entry (the least significant bit of VPN2 corresponds to the least
significant bit of the Mask field). The 20Kc processor preserves these bits on a TLBR. However, these bi
zeroed out on TLBWI and TLBWR instructions, and therefore to the user they appear to be zeroed out on a

• The value returned in the PFN field of theEntryLo0 andEntryLo1 registers may have those bits set to zero
corresponding to the one bits in the Mask field of the TLB entry (the least significant bit of PFN correspo
the least significant bit of the Mask field). The 20Kc processor preserves these bits on a TLBR. However
bits are zeroed out on TLBWI and TLBWR instructions, and therefore to the user they appear to be zero
on a read.

• The value returned in the G bit in both theEntryLo0 andEntryLo1 registers comes from the single G bit in the
TLB entry. Recall that this bit was set from the logical AND of the two G bits inEntryLo0 andEntryLo1 when
the TLB was written.

Restrictions:

This instruction is legal only if the processor is in Kernel Mode or Debug Mode, or if the CP0 usable bit is set
Status register. In other circumstances, execution of this instruction results in a Coprocessor Unusable Excep

The operation is UNDEFINED if the contents of theIndexregister are greater than or equal to the number of TL
entries in the processor.

For processors that do not include the standard TLB MMU, the operation of this instruction isUNDEFINED . How-
ever, the preferred implementation is a Reserved Instruction Exception. The 20Kc processor includes a standa
MMU and therefore this is not an issue.

Operation:

i <- Index
if i > TLBEntries -1 then

UNDEFINED
endif
PageMaskMask <- TLB[i] Mask
EntryHi <- TLB[i] R || 0 Fill ||

(TLB[i] VPN2 and not TLB[i] Mask) ||
 0 5 || TLB[i] ASID

EntryLo1 <- 0 Fill || (TLB[i] PFN1 and not TLB[i] Mask) ||

Read Indexed TLB Entry TLBR

31 0

6 1 19

COP0 CO

2426 25

0 1 0 0 0 0 1
TLBR0

6

0 0 0 0 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
278 MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

13.7 MIPS64 Instruction Descriptions
 TLB[i] C1 || TLB[i] D1 || TLB[i] V1 || TLB[i] G
EntryLo0 <- 0 Fill || (TLB[i] PFN0 and not TLB[i] Mask) ||

 TLB[i] C0 || TLB[i] D0 || TLB[i] V0 || TLB[i] G

Exceptions:

Coprocessor Unusable Exception

Reserved Instruction Exception (if not implemented)

Machine Check (if implemented and a TLB shutdown condition is detected on a TLB read)
MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10 279

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

Chapter 13 Instruction Set Architecture

ne bits
t of

ing to

in the
tion.

B

rd TLB
13.7.3.4 The TLBWI Instruction

Format:

TLBWI MIPS64

Purpose:

Write a TLB entry indexed by theIndex register.

Description:

The TLB entry pointed to by theIndexregister is written from the contents of theEntryHi, EntryLo0, EntryLo1, and
PageMaskregisters. The information written to the TLB entry might be different from that in theEntryHi, EntryLo0,
andEntryLo1 registers in that:

• The value written to the VPN2 field of the TLB entry might have those bits set to zero corresponding to the o
in the Mask field of thePageMaskregister (the least significant bit of VPN2 corresponds to the least significant bi
the Mask field). The 20Kc processor zeros out these bits on a write.

• The value written to the PFN0 and PFN1 fields of the TLB entry might have those bits set to zero correspond
the one bits in the Mask field of thePageMask register (the least significant bit of PFN corresponds to the least
significant bit of the Mask field). The 20Kc processor zeros out these bits on a write.

• The single G bit in the TLB entry is set from the logical AND of the G bits in theEntryLo0 andEntryLo1 registers.

Restrictions:

This instruction is legal only if the processor is in Kernel Mode or Debug Mode, or if the CP0 usable bit is set
Status register. In other circumstances, execution of this instruction results in a Coprocessor Unusable Excep

The operation is UNDEFINED if the contents of theIndexregister are greater than or equal to the number of TL
entries in the processor.

For processors that do not include the standard TLB MMU, the operation of this instruction isUNDEFINED . How-
ever, the preferred implementation is a Reserved Instruction Exception. The 20Kc processor includes a standa
MMU, therefore this is not an issue.

Operation:

i <- Index
if i > TLBEntries -1 then

UNDEFINED
endif
TLB[i] Mask <- PageMaskMask
TLB[i] R <- EntryHi R
TLB[i]VPN2 <- EntryHiVPN2 and not PageMaskMask
TLB[i] ASID <- EntryHi ASID
TLB[i] G <- EntryLo1 G and EntryLo0 G
TLB[i]PFN1 <- EntryLo1PFN and not PageMaskMask
TLB[i] C1 <- EntryLo1 C
TLB[i] D1 <- EntryLo1 D
TLB[i] V1 <- EntryLo1 V

Write Indexed TLB Entry TLBWI

31 0

6 1 19

COP0 CO

2426 25

0 1 0 0 0 0 1
TLBWI0

6

0 0 0 0 1 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
280 MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

13.7 MIPS64 Instruction Descriptions
TLB[i]PFN0 <- EntryLo0PFN and not PageMaskMask
TLB[i] C0 <- EntryLo0 C
TLB[i] D0 <- EntryLo0 D
TLB[i] V0 <- EntryLo0 V

Exceptions:

Coprocessor Unusable Exception

Reserved Instruction Exception (if not implemented)

Machine Check (if implemented and a TLB shutdown condition is detected on a TLB write)
MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10 281

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

Chapter 13 Instruction Set Architecture

bits in
 of

to the

in the
tion.

rd TLB
13.7.3.5 The TLBWR Instruction

Format:

TLBWR MIPS64

Purpose:

Write a TLB entry indexed by theRandom register.

Description:

The TLB entry pointed to by theRandomregister is written from the contents of theEntryHi, EntryLo0, EntryLo1,
and PageMaskregisters. The information written to the TLB entry may be different from that in theEntryHi,
EntryLo0, andEntryLo1 registers in that:

• The value written to the VPN2 field of the TLB entry may have those bits set to zero corresponding to the one
the Mask field of thePageMask register (the least significant bit of VPN2 corresponds to the least significant bit
the Mask field). The 20Kc processor zeros out these bits on a write.

• The value written to the PFN0 and PFN1 fields of the TLB entry may have those bits set to zero corresponding
one bits in the Mask field of thePageMask register (the least significant bit of PFN corresponds to the least
significant bit of the Mask field). The 20Kc processor zeros out these bits on a write.

• The single G bit in the TLB entry is set from the logical AND of the G bits in theEntryLo0 andEntryLo1 registers.

Restrictions:

This instruction is legal only if the processor is in Kernel Mode or Debug Mode, or if the CP0 usable bit is set
Status register. In other circumstances, execution of this instruction results in a Coprocessor Unusable Excep

For processors that do not include the standard TLB MMU, the operation of this instruction isUNDEFINED . How-
ever, the preferred implementation is a Reserved Instruction Exception. The 20Kc processor includes a standa
MMU, therefore this is not an issue.

Operation:

i <- Random
TLB[i] Mask <- PageMaskMask
TLB[i] R <- EntryHi R
TLB[i]VPN2 <- EntryHiVPN2 and not PageMaskMask
TLB[i] ASID <- EntryHi ASID
TLB[i] G <- EntryLo1 G and EntryLo0 G
TLB[i]PFN1 <- EntryLo1PFN and not PageMaskMask
TLB[i] C1 <- EntryLo1 C
TLB[i] D1 <- EntryLo1 D
TLB[i] V1 <- EntryLo1 V
TLB[i]PFN0 <- EntryLo0PFN and not PageMaskMask
TLB[i] C0 <- EntryLo0 C
TLB[i] D0 <- EntryLo0 D
TLB[i] V0 <- EntryLo0 V

Write Random TLB Entry TLBWR

31 0

6 1 19

COP0 CO

2426 25

0 1 0 0 0 0 1
TLBWR0

6

0 0 0 1 1 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
282 MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

13.7 MIPS64 Instruction Descriptions
Exceptions:

Coprocessor Unusable Exception

Reserved Instruction Exception (if not implemented)

Machine Check (if implemented and a TLB shutdown condition is detected on a TLB write)
MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10 283

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

Chapter 13 Instruction Set Architecture

ing a
t occurs,
ether
e of the
nstruc-
).

onding

cution.

p.

in the
tion.
13.7.3.6 The WAIT Instruction

Format:

WAIT MIPS64

Purpose:

Wait for Event.

Description:

The WAIT instruction initiates a power down sequence where the internal processor clock is divided by 16.

The WAIT instruction is implemented by stalling the pipeline at the completion of the instruction and enter
lower power mode. The pipeline is restarted when an external event, such as an interrupt or external reques
and execution continues with the instruction following the WAIT instruction. It is implementation-dependent wh
the pipeline restarts when a non-enabled interrupt is requested. In this case, software must poll for the caus
restart. If the pipeline restarts as the result of an enabled interrupt, that interrupt is taken between the WAIT i
tion and the following instruction (EPC for the interrupt points at the instruction following the WAIT instruction

The assertion of any reset or NMI signal (if not masked by EJTAG) must restart the pipeline, and the corresp
exception must be taken.

Upon restart the processor must wait until the internal clock PLL has locked before continuing instruction exe

Restrictions:

The operation of the processor isUNDEFINED if a wait instruction is placed in the delay slot of a branch or a jum

This instruction is legal only if the processor is in Kernel Mode or Debug Mode, or if the CP0 usable bit is set
Status register. In other circumstances, execution of this instruction results in a Coprocessor Unusable Excep

Operation:

Enter implementation dependent lower power mode

Exceptions:

Coprocessor Unusable Exception

Enter Standby Mode WAIT

31 0

6 1 19

COP0 CO

2426 25

0 1 0 0 0 0 1
WAIT

6

1 0 0 0 0 0Implementation-Dependent Information
284 MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

d

umber

t
ll

ero or
t in the

ounded
Chapter 14

Floating-Point Unit

This chapter describes the 20Kc Floating-Point Unit (FPU) behavior not specifically covered by the MIPS64 an
MIPS-3D ASE architectural definitions and includes the following sections:

• Section 14.1, "Special FCSR Bits"

• Section 14.2, "FCSR Cause Bit Update Flow"

• Section 14.3, "Denormal Handling"

• Section 14.4, "Reciprocal and Reciprocal Square Root"

• Section 14.5, "Single-Precision Result or Single-Word Load"

• Section 14.6, "QNaN Priority"

• Section 14.7, "Convert Ranges"

For more information on the MIPS floating-point architecture, refer toSection 13.2, "FPU Architecture".

14.1 Special FCSR Bits

The 20Kc FPU offers three bits in the Floating-Point Control and Status register (FCSR) to improve performance and
accuracy when handling tiny numbers: flush-to-zero (FS), flush override (FO), and flush-to-nearest (FN). A tiny n
is defined as a non-zero number that is smaller in magnitude than the minimum normal number (MinNorm).

14.1.1 Flush-to-Zero (FS)

Since denormal operands and tiny results can degrade the performance of an FPU, a fast non-IEEE-complian
flush-to-zero mode is provided by the MIPS architecture. This flush-to-zero mode is recommended for use in a
applications not specifically requiring strict IEEE compliance with respect to denormal and tiny numbers.

When theFCSRbit 24 (FS) is set, denormal input operands are flushed to zero. Tiny results are flushed to either z
MinNorm depending on the rounding mode settings. Also note that all flushing actions set the Inexact cause bi
FCSR.

Table 14-1 shows the effect of rounding mode on tiny result flushing.

The flushing of results is based on an intermediate result that is computed by rounding the mantissa using an unb
exponent range; that is, tiny numbers are not normalized into the supported exponent range prior to rounding.

Table 14-1 Flushing of Results

Rounding Mode Negative Tiny Positive Tiny

RN (RM=0) -Zero +Zero

RZ (RM=1) -Zero +Zero

RP (RM=2) -Zero +MinNorm

RM (RM=3) -MinNorm +Zero
MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10 285

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

Chapter 14 Floating-Point Unit

g
ternal
n using

zero
;
the FN
 setting
 the
quare
14.1.2 Flush-Override (FO)

When theFCSR bit 22 (FO) is set, a tiny intermediate multiply result of any multiply-add type instruction, includin
RECIP2.fmt and RSQRT2.fmt, is not flushed according to the FS bit. The intermediate result is maintained in an in
format that has a larger exponent range to improve accuracy. The primary intention is to increase accuracy whe
MIPS-3D instructions to pipeline reciprocal or reciprocal square root operations.

14.1.3 Flush-to-Nearest (FN)

When theFCSRbit 21 (FN) is set and the rounding mode is round-to-nearest (RN), a tiny final result is flushed to
or MinNorm, whichever is nearer. If a tiny number is strictly below MinNorm/2, then the result is flushed to zero
otherwise, it is flushed to MinNorm. The flushed result has the same sign as the result prior to flushing. Note that
bit takes precedence over the FS bit for result flushing. For rounding modes other than round-to-nearest (RN),
the FN bit will cause final results to be flushed to zero or MinNorm as if the FS bit were set. As with the FO bit,
primary intention is to increase accuracy when using MIPS-3D instructions to pipeline reciprocal or reciprocal s
root operations.

14.1.4 Summary of FS, FO and FN Bits

Table 14-2 summarizes the flushing behavior for all settings of FS, FO and FN.

Table 14-2 Denorm/Tiny Handling for All Combinations of FS/FO/FN

FS FO FN
Denorm
Input

Tiny
Intermediate

MADD
Result

Tiny Final
Result Remarks

0 0 0 E1

1. E: Unimplemented exception

E E IEEE-compliant mode

0 0 1 E E UI(N)2, 3, 4

2. U: Underflow cause set

3. I: Inexact cause set

4. (N): If rounding mode is round-to-nearest, flush-to-nearest mode takes effect; otherwise flush-to-zero mode takes effect

0 1 0 E - E

0 1 1 E - UI(N)

1 0 0 I(0)5

5. (0): Flush-to-zero mode takes effect

UI(0) UI(0) Regular MIPS64
embedded application

1 0 1 I(0) UI(0) UI(N)

1 1 0 I(0) - UI(0)

1 1 1 I(0) - UI(N)
20Kc highest accuracy
and performance
configuration
286 MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

14.2 FCSR Cause Bit Update Flow

ts in the

r

f these

d E
is set
ushed
are set
.

 = 1).

our steps

"

d has

tected in
d by the
14.2 FCSR Cause Bit Update Flow

14.2.1 Exceptions Triggered by CTC1

Regardless of the targeted floating-point control register, the CTC1 instruction inspects the enable and cause bi
FCSR to determine if an exception has occurred.

14.2.2 Generic Cause Bit Update Flow

Floating-point computations are performed in two steps:

1. Compute rounded mantissa with unbounded exponent range.

2. Flush to default result if result from the step above overflows or is tiny (no flushing happens on denorms fo
instructions supporting denorm results).

The cause bits in theFCSRare updated after each of these two steps. Any enabled exceptions detected in each o
two steps cause a trap, and subsequent steps do not update the cause bits.

Step #1 can set any of the cause bits: I (inexact), U (underflow), O (overflow), Z (divide-by-zero), V (invalid), an
(unimplemented). E has priority over V, V has priority over Z, and Z has priority over U and O. When E, V, or Z
in Step #1, no other cause bits can be set. Note, however, that I can be set with V if a denormal operand was fl
(FS = 1). I, U, and O can be set alone or in pairs: I, U or I, O. U and O can never both be set in Step #1. U and O
if the computed unbounded exponent is outside the exponent range supported by the normalized IEEE format

Step #2 can set I if the default result is generated.

14.2.3 Multiply-Add Cause Bit Update Flow

For multiply-add type instructions, the computation is extended with two additional steps:

1. Compute rounded mantissa with unbounded exponent range for multiply.

2. Flush to default result if the result from Step #1 is overflow or tiny (no flushing happens on tiny results if FO

3. Compute rounded mantissa with unbounded exponent range for add.

4. Flush to default result if the result from Step #3 overflows or is tiny.

The cause bits are updated after each of these four steps. Any enabled exceptions detected in each of these f
causes a trap and subsequent steps do not update the cause bits.

Step #1 and Step #3 can set the cause bits as described for Step #1 inSection 14.2.2, "Generic Cause Bit Update Flow.

Step #2 and Step #4 can set I if the default result is generated.

Although U and O can never both be set in Step #1 or Step #3, both U and O might be set after the multiply-ad
executed, because U might be set in Step #1, and O might be set in Step #3.

14.2.4 Cause Update Flow for Operands

Exceptional conditions directly related to the operand (for example, Cause V due to an SNaN operand) are de
the step where the operand is used. For example, in multiply-add type instructions, exceptional conditions cause
operandfr are detected in Step #3.
MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10 287

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

Chapter 14 Floating-Point Unit

ons for
hus, for

the other

. For

l
lly, this

e

erands
Denormal operands to Step #1 or Step #3 always set cause I when FS=1.

14.2.5 Cause Update Flow for Paired Single

For paired-single instructions, each of the two or four steps described above now contains two parallel computati
each of the two halves. Any cause bits set by either half in a given step are ORed together for the given step. T
paired-single instructions, both U and O can be set in Step #1 or Step #3, because one half might set U while
half sets O.

14.2.6 Cause Update Flow for Unimplemented Operation

The behavior of cause E (unimplemented) is special; it clears any previous cause updates from previous steps
example, if Step #3 sets cause E, any updates done in Step #1 or Step #2 are cleared. Only E is set in theFCSRwhen an
Unimplemented Operation trap is taken.

14.3 Denormal Handling

The 20Kc FPU handles denormal numbers for the following arithmetic operations:

• ABS.fmt

• NEG.fmt

• All compare instructions

Denormal operands or results in combination with any arithmetic instructions not listed above could cause an
unimplemented exception, depending upon the settings of FS and FN (seeTable 14-2). When the FS bit has been set, al
denormal operands and results are flushed to zero or MinNorm, regardless of the selected operation. Specifica
implies that when comparing denormal numbers in flush-to-zero mode, the operands are flushed to zero befor
comparison.

Table 14-3 summarizes 20Kc denormal operand handling for various instruction types:

Data movement instructions such as MOV.fmt do not interpret their data and are thus unaffected by denormal op
and the FS bit.

Table 14-3 Denormal Operand Handling

FS bit of FCSR Instruction Type Behavior

FS=1

Abs/Neg Flush to zero

Compare Flush to zero before
comparison

All other arithmetic Flush to zero

FS=0

Abs/Neg Handle denormal

Compare Handle denormal

All other arithmetic Unimplemented exception
288 MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

14.4 Reciprocal and Reciprocal Square Root

ccuracy

nding
ons are
ed to

IP1.fmt
14.4 Reciprocal and Reciprocal Square Root

14.4.1 Forced Inexact

Four approximation instructions force inexact on a computed result (the Inexact cause bit in theFCSR is set). These
instructions are:

• RECIP.fmt

• RECIP1.fmt

• RSQRT.fmt

• RSQRT1.fmt

Because these instructions are by nature approximations, the results do not comply with the IEEE standard for a
and thus are always considered inexact.

14.4.2 Forced Round-to-Nearest

Four MIPS-3D instructions, RECIP1.fmt, RSQRT1.fmt, RECIP2.fmt, and RSQRT2.fmt, do not use the current rou
mode in theFCSR. Instead they always operate in the round-to-nearest rounding mode. Because these instructi
used as part of a pipelined reciprocal or reciprocal square root approximation sequence, round-to-nearest is us
increase accuracy.

14.4.3 Forced Flush-to-Nearest

Two MIPS-3D instructions, RECIP1.fmt and RSQRT1.fmt, do not use the value of FN (flush-to-nearest) in theFCSR.
Instead they always operate in flush-to-nearest mode to increase accuracy. This implies that if the result of REC
and RSQRT1.fmt is tiny, an unimplemented exception is never taken even if FS and FN are zero in theFCSR.

14.4.4 Special Results

Table 14-4 lists the default answers generated for certain MIPS-3D ASE instructions.

The purpose of these default answers is to avoid infinite results when using MIPS-3D instructions in graphics
applications.

Table 14-4 Default Answers for RECIPx, RSQRTx ASE Instructions

Input RECIP1 RECIP2 RSQRT1 RSQRT2

+Zero +MaxNorm +Zero +MaxNorm +Zero

-Zero -MaxNorm +Zero -MaxNorm +Zero

+Inf +Zero +Zero +Zero +Zero

-Inf -Zero +Zero QNaN +Zero
MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10 289

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

Chapter 14 Floating-Point Unit

g

s are

have

ord
n is to

32 bits

 input

a

s. If the
14.4.5 RSQRT2 Implementation

The MIPS3D instruction RSQRT2.fmt is a step in a pipelined reciprocal square root operation, consisting of the
following operation:

fd = -(fs * ft – 1.0) / 2

The 20Kc processor implements the RSQRT2.fmt instruction as a special type of NMSUB.fmt with the followin
equivalent operation:

fd = - ((fs * ft) / 2 – 0.5)

The division by two is merged with the multiplication and is performed before any overflow or underflow condition
detected.

Although normal use of RSQRT2.fmt should never result in overflow or underflow, the two equations above do
slightly different behavior with respect to exceptional conditions.

14.5 Single-Precision Result or Single-Word Load

In MIPS64 mode, all 32-bit results from a single-precision floating-point operation, single-word load, or single-w
move are replicated to both lower 32-bit and upper 32-bit halves of a 64-bit FPR destination entry. The intentio
speed up graphic applications by avoiding execution of the CVT.PS.S instruction.

This behavior is a 20Kc specific implementation feature that is allowed by the MIPS architecture, since the upper
are declared as undefined for these cases.

14.6 QNaN Priority

In case of one or more QNaN operands (no SNaN operand), the QNaN operand is propagated from one of the
operands in this order of priority:fs, ft, fr. However, if the multiply result of a MADD-type instruction is a QNaN
operand, this is prioritized over a QNaN infr, because the MADD.fmt instruction is considered to be equivalent to
MUL.fmt followed by an ADD.fmt.

14.7 Convert Ranges

For certain format conversion operations, the 20Kc processor only supports a range of the legal input operand
input operand is out of range, an unimplemented exception occurs.Table 14-5andTable 14-6specify the minimum and
maximum operand ranges supported in hardware.

14.7.1 Convert Integer to Float

Table 14-5 Convert Integer to Float: CVT.[DS].[WL]

Instruction Minimum Maximum

CVT.S.W 0xFF80.0000 0x007F.FFFF

CVT.S.L 0xFFFF.FFFF.FF80.0000 0x0000.0000.007F.FFFF

CVT.D.L 0xFFF8.0000.0000.0000 0x0007.FFFF.FFFF.FFFF
290 MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

14.7 Convert Ranges

he full
14.7.2 Convert Float to Integer

14.7.3 Convert Double to Single Precision: CVT.S.D

Conversion from double to single precision is supported for all ranges. Values that when rounded are outside t
single-precision range will result in an overflow or underflow.

CVT.D.W 0x8000.0000 0x7FFF.FFFF

Table 14-6 Convert Float to Int: CVT/ROUND/CEIL/FLOOR/TRUNC/.[WL].[DS]

Instruction Minimum Maximum

convert.W.S 0xCAFF.FFFF 0x4AFF.FFFF

convert.W.D 0xC1CF.FFFF.FFFF.FFFF 0x41CF.FFFF.FFFF.FFFF

convert.L.S 0xCAFF.FFFF 0x4AFF.FFFF

convert.L.D 0x32F.FFFF.FFFF.FFFF 0x432F.FFFF.FFFF

Table 14-5 Convert Integer to Float: CVT.[DS].[WL]

Instruction Minimum Maximum
MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10 291

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

Chapter 14 Floating-Point Unit
292 MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

ant
e note of

change
Appendix A

Revision History

In the left hand page margins of this document you may find vertical change bars to note the location of signific
changes to this document since its last release. Significant changes are defined as those which you should tak
as you use the MIPS IP. Changes to correct grammar, spelling errors or similar may or may not be noted with
bars. Change bars will be removed for changes which are more than one revision old.

Revision Date Description

01.00 March 21, 2001 • Converted entire manual to latest template.

01.01 March 31, 2001 • Added miscellaneous hard copy edits to manual.

01.02 June 4, 2001 • Converted manual to latest template

01.03 June 6, 2001 • Minor edits and revisions made

01.04 August 31, 2001 • Edited titles, trademarks and revision number. Added Ch. 14 to manual.

01.05 September 12, 2001 • Made additional minor edits to Ch. 14 FPU. Minor edits made in Chapter 7
Caches

01.06 September 17, 2001 • Regenerates TOC, LOT and LOF.

1.07 December 14, 2001

• Updated template and removed non-template fonts.

• Added new sections to Chapter 14, FPU, on FCSR Cause bit, Forced
Flush-to-Nearest, and RSQRT2 Operation.

• Updated Table 14-4.

• Added VI bit to Config register.

• WAIT instruction changes.

• SR (Soft Reset) bit clarified.

• Compatability segment decoding clarified.

• Removed process-specific information.

• Added programming notes to CACHE Instruction description in Chapter
13.

• Updated latency for DIV and DDIV instructions in Table 3-1.

• Made global edits to the document.
MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10 293

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

Appendix A Revision History
1.08 March 28, 2002

• ITagLo register definition corrected in Chapter 6.

• Corrected name of register 26 in Table 6-1.

• Minor writing style changes.

• Description update for Table 6-15 ERL bit.

• BIST testability description updated. Bist Algorithm selection and retention
timing information have been introduced in Chapter 12

• Added more details and examples on coherency conflict checking, and
added subsection on flow control implications for SOC controller design in
Chapter 8.

• Added additional information on Virtual Icache and implications to
software programmer in Chapter 7.

• Added description of Instruction recode algorithm and its effect on
IDataLo/IDataHi register content to Chapter 6.

• Added more software programming guidelines for uncached accelerated
stores in Chapter 7.

01.09 June 21, 2002

• Updated Power-On Reset Sequence (9.3.1) #1 and#2 deleted.

• Updated PRID Register Field Descriptions "Revision" field description in
Table 6-19.

• Updated Table 6-35 DTagLo Register Field Descriptions. PState[1]
description is changed from Valid to Reserved.

• Added explanation of change bars to the readers above the revision history
table

• ChangedTS_BistInvoke to TS_BistHold in the last 2 sentences of 12.3.2.2.

01.10 Sept 28, 2002

• UpdatedTable 3-1 andTable 3-2.

• Updated section4.8, Figure 4-12 andFigure 4-13.

• Updated section5.7.9.

• UpdatedTable 6-19 andTable 6-35.

• Updated section8.1.5 andFigure 8-4

• Updated Address field of Data Register Contents inTable 11-40.

• UpdatedFigure 12-11 andFigure 12-12.

Revision Date Description
294 MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

Appendix B

References

[1] EJTAG Specification, Revision 2.6, Document Number MD00047

[2] MIPS64™ 20Kc™ TSMC CL013LV Processor Core Datasheet, Document Number MD00125

[3] MIPS64™ 20Kc™ TSMC CL018G Processor Core Datasheet, Document Number MD00207

[4] IEEE Std. 1149.1-1990, IEEE Standard Test Access Port and Boundary-Scan Architecture
MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10 295

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

Appendix B References
296 MIPS64™ 20Kc™ Processor Core User’s Manual, Revision 01.10

Copyright © 2002 MIPS Technologies Inc. All rights reserved.

	Chapter 1
	Introduction to the 20Kc Processor
	1.1� Features
	1.2� Architectural Overview
	1.2.1� Instruction Fetch Unit
	1.2.2� Instruction Dispatch Unit
	1.2.3� Integer Execution Unit
	1.2.4� Floating-Point Unit
	1.2.5� Load/Store Unit
	1.2.6� Memory Management Unit
	1.2.7� Bus Interface Unit
	1.2.8� EJTAG Unit

	1.3� System Overview

	Chapter 2
	Instruction Set Overview
	2.1� CPU Instruction Formats
	2.2� Load and Store Instructions
	2.2.1� Scheduling for Load Use Latencies
	2.2.2� Defining Access Types

	2.3� Computational Instructions
	2.3.1� Multiply and Divide Instructions

	2.4� Jump and Branch Instructions
	2.4.1� Overview of Jump Instructions
	2.4.2� Overview of Branch Instructions

	2.5� Control Instructions
	2.6� Coprocessor Instructions
	2.7� Enhancements to the MIPS Architecture

	Chapter 3
	Pipeline
	3.1� Pipeline Overview
	3.2� Fetch Pipeline
	3.2.1� F Stage: Instruction Fetch
	3.2.2� V Stage: Validate

	3.3� Dispatch Pipeline
	3.3.1� D Stage: Instruction Decode
	3.3.2� R Stage: Register File Read

	3.4� Integer and Load/Store Pipelines
	3.4.1� Integer Pipeline A
	3.4.1.1� X Stage: Execution
	3.4.1.2� C Stage: Cache
	3.4.1.3� W Stage: Register Write
	3.4.1.4� Loads and Stores
	3.4.1.5� T Stage: TLB Lookup
	3.4.1.6� U Stage: Update
	3.4.1.7� Q Stage: Memory Request
	3.4.1.8� B Stage: BIU Refill

	3.4.2� Integer Pipeline B
	3.4.2.1� X Stage: Execution
	3.4.2.2� C Stage: Cache
	3.4.2.3� W Stage: Register Write
	3.4.2.4� Integer Multiply and Divide
	3.4.2.5� Control Transfer Instructions
	3.4.2.6� Conditional Moves

	3.5� Floating-Point Pipeline
	3.5.1� M Stage: FP Multiplier Array - First Pass
	3.5.2� N Stage: FP Multiplier Array - Second Pass
	3.5.3� I Stage: FP Multiply Completion
	3.5.4� J Stage: FP Add
	3.5.5� K Stage: FP Normalization
	3.5.6� Z Stage: FPR Write

	3.6� Instruction Latencies and Repeat Rates
	3.7� Instruction Fetch Rules
	3.8� Instruction Dispatch Rules
	3.9� Dispatch of Privileged Instructions

	Chapter 4
	Memory Management
	4.1� Operating Modes
	4.2� Other Modes
	4.2.1� 64-bit Address Enable
	4.2.2� 64-bit Operations Enable
	4.2.3� 64-bit FPR Enable

	4.3� Processor Mode Selection
	4.4� Addressing Modes
	4.5� Address Space
	4.5.1� Access Control as a Function of Address and Operating Mode
	4.5.2� Address Translation and Cache Coherency Attributes for the kseg0 and kseg1 Segments
	4.5.3� Address Translation and Cache Coherency Attributes for the xkphys Segment
	4.5.4� Address Translation for the kuseg Segment when StatusERL = 1
	4.5.5� Special Behavior for the kseg3 Segment when DebugDM = 1
	4.5.6� Special Behavior for Data References in User Mode with StatusUX = 0

	4.6� Address Segments
	4.6.1� User Mode Segments
	4.6.1.1� 32-bit User Mode (useg)
	4.6.1.2� 64-bit User Mode (xuseg)

	4.6.2� Supervisor Mode Segments
	4.6.2.1� 32-bit Supervisor Mode, User Space (suseg)
	4.6.2.2� 32-bit Supervisor Mode, Supervisor Space (sseg)
	4.6.2.3� 64-bit Supervisor Mode, User Space (xsuseg)
	4.6.2.4� 64-bit Supervisor Mode, Extended Supervisor Space (xsseg)
	4.6.2.5� 64-bit Supervisor Mode, Compatible Supervisor Space (csseg)

	4.6.3� Kernel Mode Segments
	4.6.3.1� 32-bit Kernel Mode, User Space (kuseg)
	4.6.3.2� 32-bit Kernel Mode, Kernel Space 0 (kseg0)
	4.6.3.3� 32-bit Kernel Mode, Kernel Space 1 (kseg1)
	4.6.3.4� 32-bit Kernel Mode, Supervisor Space (ksseg)
	4.6.3.5� 32-bit Kernel Mode, Kernel Space 3 (kseg3)
	4.6.3.6� 64-bit Kernel Mode, User Space (xkuseg)
	4.6.3.7� 64-bit Kernel Mode, Supervisor Space (xksseg)
	4.6.3.8� 64-bit Kernel Mode, Physical Spaces (xkphys)
	4.6.3.9� 64-bit Kernel Mode, Extended Kernel Segment (xkseg)
	4.6.3.10� 64-bit Kernel Mode, Compatibility Spaces (ckseg0, ckseg1, cksseg, ckseg3)

	4.6.4� Debug Mode

	4.7� Virtual Address Translation
	4.7.1� Page Size Support
	4.7.2� Address Space Identifiers and Global Processes
	4.7.3� Address Translation Mechanism

	4.8� Translation Lookaside Buffers
	4.8.1� 20Kc TLB Organization
	4.8.2� TLB Tag and Data Formats

	4.9� TLB Instructions
	4.9.1� Hits, Misses, and Multiple Matches
	4.9.2� Page Sizes and Replacement Algorithm

	Chapter 5
	Exceptions and Interrupts
	5.1� Exception Conditions
	5.2� Exception Types
	5.3� Exception Priority
	5.4� Exception Vector Locations
	5.5� General Exception Processing
	5.6� Debug Exception Processing
	5.7� Exceptions
	5.7.1� Reset Exception
	5.7.2� Soft Reset Exception
	5.7.3� Debug Single Step Exception
	5.7.4� Debug Interrupt Exception
	5.7.5� Debug Instruction Break Exception
	5.7.6� Non-Maskable Interrupt (NMI) Exception
	5.7.7� Machine Check Exception
	5.7.8� Bus Error Exception — Instruction Fetch or Data Access
	5.7.9� Cache Error Exception
	5.7.10� Interrupt Exception
	5.7.11� Debug Software Breakpoint Exception
	5.7.12� Watch Exception — Instruction Fetch or Data Access
	5.7.13� Address Error Exception — Instruction Fetch/Data Access
	5.7.14� TLB Refill and XTLB Refill Exceptions
	5.7.15� TLB Invalid Exception — Instruction Fetch or Data Access
	5.7.16� Execution Exception — System Call
	5.7.17� Execution Exception — Breakpoint
	5.7.18� Execution Exception — Reserved Instruction
	5.7.19� Execution Exception — Coprocessor Unusable
	5.7.20� Execution Exception — Integer Overflow
	5.7.21� Execution Exception — Trap
	5.7.22� Precise Debug Data Break Exception
	5.7.23� Imprecise Debug Data Break Exception
	5.7.24� TLB Modified Exception — Data Access

	5.8� Exception Handling and Servicing Flowcharts
	5.9� Interrupts

	Chapter 6
	Coprocessor Registers
	6.1� CP0 Register Summary
	6.2� CP0 Registers
	6.2.1� Index Register (CP0 Register 0, Select 0)
	6.2.2� Random Register (CP0 Register 1, Select 0)
	6.2.3� EntryLo0, EntryLo1 (CP0 Registers 2 and 3, Select 0)
	6.2.4� Context Register (CP0 Register 4, Select 0)
	6.2.5� PageMask Register (CP0 Register 5, Select 0)
	6.2.6� Wired Register (CP0 Register 6, Select 0)
	6.2.7� BadVAddr Register (CP0 Register 8, Select 0)
	6.2.8� Count Register (CP0 Register 9, Select 0)
	6.2.9� EntryHi Register (CP0 Register 10, Select 0)
	6.2.10� Compare Register (CP0 Register 11, Select 0)
	6.2.11� Status Register (CP0 Register 12, Select 0)
	6.2.12� Cause Register (CP0 Register 13, Select 0)
	6.2.13� Exception Program Counter (CP0 Register 14, Select 0)
	6.2.14� Processor Identification (CP0 Register 15, Select 0)
	6.2.15� Config Register (CP0 Register 16, Select 0)
	6.2.16� Config1 Register (CP0 Register 16, Select 1)
	6.2.17� Load Linked Address (CP0 Register 17, Select 0)
	6.2.18� WatchLo Register (CP0 Register 18)
	6.2.19� WatchHi Register (CP0 Register 19)
	6.2.20� XContext Register (CP0 Register 20)
	6.2.21� Debug Register (CP0 Register 23)
	6.2.22� Debug Exception Program Counter Register (CP0 Register 24)
	6.2.23� Performance Counter Registers (CP0 Register 25, Selects 0, 1)
	6.2.24� DErrCtl Register (CP0 Register 26, Select 0)
	6.2.25� IErrCtl Register (CP0 Register 26, Select 1)
	6.2.26� CacheErr Register (CP0 Register 27, Select 0)
	6.2.27� ITagLo Register (CP0 Register 28, Select 0)
	6.2.28� IDataLo Register (CP0 Register 28, Select 1)
	6.2.29� DTagLo Register (CP0 Register 28, Select 2)
	6.2.30� DDataLo Register (CP0 Register 28, Select 3)
	6.2.31� ITagHi Register (CP0 Register 29, Select 0)
	6.2.32� IDataHi Register (CP0 Register 29, Select 1)
	6.2.33� DTagHi Register (CP0 Register 29, Select 2)
	6.2.34� DDataHi Register (CP0 Register 29, Select 3)
	6.2.35� ErrorEPC (CP0 Register 30, Select 0)
	6.2.36� DESAVE Register (CP0 Register 31)

	6.3� CP0 Hazards
	6.4� CP1 Register Summary
	6.5� CP1 Registers
	6.5.1� Floating-Point Implementation Register (CP1 Register 0)
	6.5.2� Floating-Point Condition Codes Register (CP1 Register 25)
	6.5.3� Floating-Point Exceptions Register (CP1 Register 26)
	6.5.4� Floating-Point Enables Register (CP1 Register 28)
	6.5.5� Floating-Point Control and Status Register (CP1 Register 31)

	Chapter 7
	Caches
	7.1� Instruction Cache
	7.1.1� Memory Management implications of the Virtual I-Cache
	7.1.1.1� Virtual I-Cache synchronization with Joint Translation Buffer (JTB)
	7.1.1.2� Virtual I-Cache hits

	7.2� Data Cache
	7.3� Cache Protocol
	7.4� Cache Attributes
	7.4.1� Uncached
	7.4.2� Uncached Accelerated
	7.4.2.1� Gathering Mechanism for Uncached Accelerated Stores

	7.4.3� Non-Coherent Write-Back
	7.4.4� Coherent Exclusive Write-Back
	7.4.5� Non-Coherent, Write-Through with No Write-Allocate
	7.4.6� Encoding

	Chapter 8
	Bus Interface Unit
	8.1� 20Kc System Interface Features
	8.1.1� Processor and External Requests
	8.1.2� Multiplexed Unidirectional 32-bit Processor Address/Data Bus
	8.1.3� Multiplexed Unidirectional 64-bit SOC Controller Address/Data Bus
	8.1.4� Support for Multiple Outstanding Split Transactions
	8.1.5� Credit-Based Flow Control
	8.1.5.1� SOC Controller Resource Control
	8.1.5.2� Processor Resource Control
	8.1.5.3� Flow Control Implications on SOC controller design.

	8.2� Bus Encoding (64-bit EB_SysAD Mode)
	8.2.1� PrcCmd/SysCmd Bus Encoding (Command Cycles)
	8.2.1.1� Processor and SOC Controller Request Encoding
	8.2.1.2� Processor Read Request Encoding
	8.2.1.3� Processor Write Request Encoding
	8.2.1.4� External Invalidation Request Encoding
	8.2.1.5� External Intervention Request Encoding

	8.2.2� PrcCmd/SysCmd Bus Encoding (Data Cycles)
	8.2.2.1� Cache Line State Encoding
	8.2.2.2� Data Status Bit Encoding

	8.3� Processor and External Request Protocols (64-bit EB_SysAD Mode)
	8.3.1� Processor Requests
	8.3.1.1� Processor Read Requests
	8.3.1.2� Processor Write Requests

	8.3.2� External Requests
	8.3.2.1� External Intervention Request
	8.3.2.2� External Invalidation Request

	8.3.3� Coherency Conflicts
	8.3.3.1� Conflict Resolution
	8.3.3.2� External Observable Behavior
	8.3.3.3� Implications of Coherency Conflicts on SOC Controller design

	8.3.4� Data Ordering
	8.3.5� Data Alignment
	8.3.6� Dual Multiplexed Address and Data Buses

	8.4� Bus Encoding (32-bit EB_SysAD Mode)
	8.4.1� PrcCmd/SysCmd Bus Encoding (Command Cycles)
	8.4.1.1� Processor Request Encoding
	8.4.1.2� Processor Read Request Encoding
	8.4.1.3� Processor Write Request Encoding
	8.4.1.4� External Invalidation Request Encoding
	8.4.1.5� External Intervention Request Encoding
	8.4.1.6� PrcCmd/SysCmd Bus Encoding (Data Cycles)
	8.4.1.7� Cache Line State Encoding
	8.4.1.8� Data Status Bit Encoding

	8.5� Processor and External Request Protocols (32-bit EB_SysAD Mode)
	8.5.1� Processor Requests
	8.5.1.1� Processor Read Requests
	8.5.1.2� Processor Write Requests
	8.5.1.3� External Requests

	8.6� 20Kc Signal Descriptions

	Chapter 9
	Reset and Initialization
	9.1� Processor Reset Signals
	9.2� Processor Initialization Signals
	9.3� Reset Sequences
	9.3.1� Power-On Reset Sequence
	9.3.2� ColdReset Sequence
	9.3.3� Warm Reset Sequence

	Chapter 10
	Power Management
	10.1� Register-Controlled Power Management
	10.2� Instruction-Controlled Power Management

	Chapter 11
	EJTAG Debug Support
	11.1� EJTAG Components and Options
	11.1.1� EJTAG Extensions to the MIPS Processor Core
	11.1.2� Debug Control Register
	11.1.3� Hardware Breakpoint Unit
	11.1.4� EJTAG Test Access Port

	11.2� Register and Memory Map Overview
	11.2.1� Coprocessor 0 Register Overview
	11.2.2� Memory-Mapped EJTAG Register Overview
	11.2.2.1� Debug Control Register Overview
	11.2.2.2� Instruction Hardware Breakpoint Register Overview

	11.2.3� Data Hardware Breakpoint Register Overview
	11.2.3.1� Memory-Mapped EJTAG Memory Overview
	11.2.3.2� EJTAG Test Access Port Registers

	11.2.4� Register Field Notations

	11.3� EJTAG Processor Core Extensions
	11.3.1� Debug Mode Execution
	11.3.2� Debug Mode Instruction Set
	11.3.3� Debug Mode Address Space
	11.3.3.1� Access to dmseg (EJTAG Memory) Address Range
	11.3.3.2� Access to drseg (EJTAG Registers) Address Range

	11.3.4� Debug Mode Handling of Processor Resources
	11.3.4.1� Coprocessors
	11.3.4.2� Random Register
	11.3.4.3� Count Register
	11.3.4.4� WatchLo/WatchHi Registers
	11.3.4.5� LL / SC Instruction Pair

	11.3.5� Debug Exceptions
	11.3.5.1� Debug Exception Priorities
	11.3.5.2� Debug Exception Vector Location
	11.3.5.3� General Debug Exception Processing
	11.3.5.4� Debug Breakpoint Exception
	11.3.5.5� Debug Instruction Break Exception
	11.3.5.6� Debug Data Break Load/Store Precise Exception on Address
	11.3.5.7� Debug Data Break Load/Store Imprecise Exception on Data
	11.3.5.8� Debug Single Step Exception
	11.3.5.9� Debug Interrupt Exception

	11.3.6� Debug Mode Exceptions
	11.3.6.1� Exceptions Taken in Debug Mode
	11.3.6.2� Exceptions on Imprecise Errors
	11.3.6.3� Debug Mode Exception Processing

	11.3.7� Interrupts and NMIs
	11.3.7.1� Interrupts
	11.3.7.2� NMIs

	11.3.8� Reset and Soft Reset of the Processor
	11.3.8.1� EJTAGBOOT Feature
	11.3.8.2� Reset Occurred Indication through Test Access Port
	11.3.8.3� Reset of Other Debug Features

	11.3.9� EJTAG Instructions
	11.3.10� EJTAG Coprocessor 0 Registers

	11.4� Debug Control Register
	11.5� Hardware Breakpoints
	11.5.1� Introduction
	11.5.1.1� Instruction Breakpoint Feature
	11.5.1.2� Data Breakpoint Feature

	11.5.2� Overview of Instruction and Data Breakpoint Registers
	11.5.2.1� Overview of Instruction Breakpoint Registers
	11.5.2.2� Overview of Data Breakpoint Registers

	11.5.3� Conditions for Matching Breakpoints
	11.5.3.1� Conditions for Matching Instruction Breakpoints
	11.5.3.2� Conditions for Matching Data Breakpoints

	11.5.4� Debug Exceptions from Breakpoints
	11.5.4.1� Debug Exception Caused by Instruction Breakpoint
	11.5.4.2� Precise Debug Exception Caused by Data Breakpoint
	11.5.4.3� Imprecise Debug Exception Caused by Data Breakpoint

	11.5.5� Breakpoints Used as Triggerpoints
	11.5.6� Instruction Breakpoint Registers
	11.5.6.1� Instruction Breakpoint Status (IBS) Register
	11.5.6.2� Instruction Breakpoint Address n (IBAn) Register
	11.5.6.3� Instruction Breakpoint Address Mask n (IBMn) Register
	11.5.6.4� Instruction Breakpoint ASID n (IBASIDn) Register
	11.5.6.5� Instruction Breakpoint Control n (IBCn) Register

	11.5.7� Data Breakpoint Registers
	11.5.7.1� Data Breakpoint Status (DBS) Register
	11.5.7.2� Data Breakpoint Address n (DBAn) Register
	11.5.7.3� Data Breakpoint Address Mask n (DBMn) Register
	11.5.7.4� Data Breakpoint ASID n (DBASIDn) Register
	11.5.7.5� Data Breakpoint Control n (DBCn) Register
	11.5.7.6� Data Breakpoint Value n (DBVn) Register

	11.6� EJTAG Test Access Port
	11.6.1� TAP Signals
	11.6.1.1� Test Clock Input (EJ_TCK)
	11.6.1.2� Test Mode Select Input (EJ_TMS)
	11.6.1.3� Test Data Input (EJ_TDI)
	11.6.1.4� Test Data Output (EJ_TDO)
	11.6.1.5� Test Reset Input (EJ_TRST_N)

	11.6.2� TAP Controller
	11.6.3� Test-Logic-Reset State
	11.6.3.1� Capture-IR State
	11.6.3.2� Shift-IR State
	11.6.3.3� Update-IR State
	11.6.3.4� Capture-DR State
	11.6.3.5� Shift-DR State
	11.6.3.6� Update-DR State

	11.6.4� Instruction Register and Special Instructions
	11.6.4.1� ALL Instruction
	11.6.4.2� EJTAGBOOT and NORMALBOOT Instructions
	11.6.4.3� FASTDATA Instruction

	11.6.5� Data Registers
	11.6.5.1� Device Identification (ID) Register (TAP Instruction IDCODE)
	11.6.5.2� Implementation Register (TAP Instruction IMPCODE)
	11.6.5.3� Data Register (TAP Instruction DATA or ALL)
	11.6.5.4� Address Register (TAP Instruction ADDRESS or ALL)
	11.6.5.5� EJTAG Control Register (ECR) (TAP Instruction CONTROL or ALL)
	11.6.5.6� EJTAGBOOT Indication Determines Reset Value of EjtagBrk, ProbTrap, and ProbEn
	11.6.5.7� Combinations of ProbTrap and ProbEn
	11.6.5.8� Fastdata Register (TAP Instruction FASTDATA)
	11.6.5.9� Bypass Register (TAP Instruction BYPASS, EJTAGBOOT, NORMALBOOT or Unused)

	Chapter 12
	20Kc Test Features
	12.1� Cache Test Mode
	12.1.1� Cache Test Mode Interface Signals
	12.1.2� System Interface Clock Divisor and Mode
	12.1.3� Entering Cache Test Mode
	12.1.4� Exit from Cache Test Mode
	12.1.5� Cache Test Mode Commands
	12.1.6� Read/Write Granularity
	12.1.6.1� Read Granularity
	12.1.6.2� Write Granularity

	12.1.7� Encodings
	12.1.8� Protocols
	12.1.8.1� Normal Read
	12.1.8.2� Normal Write
	12.1.8.3� Write Same Data

	12.2� PLL Bypass Mode
	12.3� BIST (Built-In Self Test)
	12.3.1� Overview
	12.3.1.1� Interface Signals
	12.3.1.2� External Signal Behavior

	12.3.2� Algorithms for Memory Test
	12.3.2.1� March C+ Algorithm
	12.3.2.2� IFA-13 Algorithm

	12.3.3� BIST Integration on 20Kc Cache Memories
	12.3.4� Cycles for Memory BIST Testing

	Chapter 13
	Instruction Set Architecture
	13.1� CPU Architecture
	13.1.1� CPU Register Overview
	13.1.2� Endianness
	13.1.3� CPU Instruction Overview

	13.2� FPU Architecture
	13.2.1� FPU Register Overview
	13.2.2� FPU Instruction Overview

	13.3� Coprocessor Architecture
	13.4� Privileged Instruction Set Architecture
	13.4.1� Privileged Register Overview
	13.4.2� Privileged Instruction Overview

	13.5� EJTAG Support Instructions
	13.6� Instruction Bit Encoding
	13.7� MIPS64 Instruction Descriptions
	13.7.1� UNPREDICTABLE and UNDEFINED
	13.7.1.1� UNPREDICTABLE
	13.7.1.2� UNDEFINED

	13.7.2� Unprivileged Instructions
	13.7.2.1� The PREF Instruction
	13.7.2.2� The PREFX Instruction

	13.7.3� Privileged Instructions
	13.7.3.1� CACHE Instruction
	13.7.3.2� The TLBP Instruction
	13.7.3.3� The TLBR Instruction
	13.7.3.4� The TLBWI Instruction
	13.7.3.5� The TLBWR Instruction
	13.7.3.6� The WAIT Instruction

	Chapter 14
	Floating-Point Unit
	14.1� Special FCSR Bits
	14.1.1� Flush-to-Zero (FS)
	14.1.2� Flush-Override (FO)
	14.1.3� Flush-to-Nearest (FN)
	14.1.4� Summary of FS, FO and FN Bits

	14.2� FCSR Cause Bit Update Flow
	14.2.1� Exceptions Triggered by CTC1
	14.2.2� Generic Cause Bit Update Flow
	14.2.3� Multiply-Add Cause Bit Update Flow
	14.2.4� Cause Update Flow for Operands
	14.2.5� Cause Update Flow for Paired Single
	14.2.6� Cause Update Flow for Unimplemented Operation

	14.3� Denormal Handling
	14.4� Reciprocal and Reciprocal Square Root
	14.4.1� Forced Inexact
	14.4.2� Forced Round-to-Nearest
	14.4.3� Forced Flush-to-Nearest
	14.4.4� Special Results
	14.4.5� RSQRT2 Implementation

	14.5� Single-Precision Result or Single-Word Load
	14.6� QNaN Priority
	14.7� Convert Ranges
	14.7.1� Convert Integer to Float
	14.7.2� Convert Float to Integer
	14.7.3� Convert Double to Single Precision: CVT.S.D

	Appendix A
	Revision History

	Appendix B
	References

